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Abstract. This paper is devoted to the problem of constructing an optimal covering of a
two-dimensional figure by the union of circles. The radii of the circles, generally speaking,
are different. Each of them is equal to the product of some positive coefficient and the
parameter r common to all circles, which is the objective function to be minimized. We
carried out an analytical study of the problem and obtained expressions that allow us to
describe the generalized Dirichlet zones for the considered case. We propose an iterative
procedure correcting the coordinates of the circles’ centers that form the covering, which is
based on finding the Chebyshev centers of the generalized Dirichlet zones. This procedure
does not impair the properties of the covering. A computational algorithm is proposed
and implemented. It includes the multistart method to generate the initial positions of
points and the iterative procedure. We carried out a computational experiment to find
optimal coverings by sets of circles at various coefficients that determine the radius of
each of them. Two and three different types of circles are used. Both convex and non-
convex polygons are taken as the covered sets. The analysis of the calculation results was
carried out, which allowed us to draw conclusions about the properties of the constructed
coverings.

Keywords: optimization, circle covering problem, generalized Dirichlet zone, Chebyshev
center, iterative algorithm, computational experiment.

1. Introduction

The problem of the optimal covering constructing of a bounded set on the
plane is one of the main challenges of computational geometry [8]. Often it
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is considered in the traditional formulation: it is necessary to cover a given
set with a certain number of equal circles [9]. And even in such a relatively
pure form, it is NP-hard. In recent years, non-classical versions of this prob-
lem have been considered. Coverage elements can be different, as well as be
circles in some non-Euclidean metric. Such statements arise in connection
with the tasks of infrastructure logistics [2; 6] when one needs to take into
account special constrains. For example, service areas of various logistics
centers can have different radii, or a service zone can be heterogeneous.
Besides, some tasks need to find reserve or multiple coverings [7].

This article is devoted to constructing the optimal covering of a bounded
set by circles of different radii. Assume that the radii are proportional to
the variable r, and its minimization is the objective function of the problem.

It was well-known Hungarian mathematician G. Fejes Tóth [10] who
hypothesized the lower boundary of the covering density. The hypothesis
was proved only after 27 years [11], and this gave an impulse to a more active
study of this problem. In [4], the authors suggest a sufficient condition for
the covering to be “solid”. The article [3] presents simple constructive
estimates of the upper and lower boundaries of the covering density.

Analytical methods for covering and packaging problems usually have
a limited range of applicability. Therefore, the primary research tool is a
numerical experiment. Among a significant number of such publications,
we point out the paper [1] proposed a successful algorithm of branch-
boundaries, which allows one to check whether a polygon is covered by
a given set of circles.

In this paper, we continue a long cycle of articles devoted to optimal
circle covering problem (CCP). Earlier, we studied CCP [7], including
multiple and reserve coverings in non-Euclidean metrics, the research me-
thodology is based on the construction of n-networks [5]. In this article,
we consider the new problem of covering a flat set with different circles, for
which n-networks, generally speaking, are not applicable. To solve it, we
propose a computational algorithm and prove theorems on its properties.
A computational experiment is carried out for the cases of two and three
different types of covering circles. It shows the efficiency of the proposed
approach, and also makes it possible to conclude the coverings’ properties.

2. Formulation

Assume we are given a compact set M ⊂ R
2 and a set of n ∈ N positive

numbers αi, i = 1, n. We address to optimal circle covering problem (CCP)
in the following formulation. It is required to find the optimal covering
of the set M by the union of n circles O(si, αir), i = 1, n, whose centers
form the array S = {si}ni=1, and the radii are proportional to the numbers
αi, i = 1, n. The objective function is r → min. In this formulation,
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the problem can have various interpretations in geometry, approximation
theory, and control theory.

Definition 1. A covering Ξn of a compact set M ⊂ X by n circles with
radii ri, i = 1, n is a union O(x1, r1) ∪O(x2, r2) ∪ . . . ∪O(xn, rn), if

M ⊆
⋃

i=1,n

O(xi, ri).

Definition 2. A covering Ξn is an optimal covering of M , if r is minimal.

The problem of finding optimal covering comes to determine a set S of
n points for which

RM (S) = max
x∈M

min
i=1,n

ϕ(i)(x) (2.1)

is minimal. Here

ϕ(i)(x) ,
‖x− si‖

αi
, i = 1, n. (2.2)

RM (S) means such minimal r, for which M belongs to a union of circles
Ξn.

The problem is a generalization of the problem of finding the best
Chebyshev n-network of the set.

3. Solution method

3.1. Dividing the set M into zones

In the article, we develop the previously used procedures for constructing
coverings by sets of congruent circles. Their basis includes two steps: the
construction of the partition of the set M into zones of influence of points
si ∈ S (centers of the covering circles) and the shift of points in order to
minimize the radius of the circle in which this zone can be inscribed. How-
ever, since we consider unequal circles having different radii proportional
to the numbers αi, i = 1, n, the structure of the zones will be different.

Definition 3. The domain of the dominance of point si over point sj is
called the set

D(i,j)(S) ,
{
x ∈ R

2 : ϕ(i)(x) ≤ ϕ(j)(x)
}
.

For the convenience, we assume that D(i,i)(S) = R
2.

Theorem 1 (On the structure of the dominance domain). Let si, sj be
different points from S. Then the following statements hold.
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1) If αi < αj , then D
(i,j)(S) is a circle

D(i,j)(S) = O
(
v, r∗(αi, αj , si, sj)

)
, (3.1)

with a center in

v = si +
α2
i

α2
j − α2

i

(si − sj) (3.2)

having a radius

r∗(αi, αj , si, sj) =
αiαj∣∣α2
j − α2

i

∣∣‖si − sj‖. (3.3)

2) If αi = αj , then D
(i,j)(S) is a half-plane

D(i,j)(S) =
{
x ∈ R

2 : ‖x− si‖ ≤ ‖x− sj‖
}
. (3.4)

3) If αi > αj , then D
(i,j)(S) is an unbounded set

D(i,j)(S) =
{
x ∈ R

2 : ‖x−w‖ ≥ r∗(αi, αj , si, sj)
}
, (3.5)

w = sj +
α2
i

α2
i − α2

j

(sj − si). (3.6)

Proof. Let us begin with case 1). Without loss of generality, we assume that
the points si and sj have coordinates (0, 0) and (0, d), d > 0, respectively.
Consider the geometric set X = {x} = {(x, y)} of points which obey

ϕ(i)(x) = ϕ(j)(x). (3.7)

From formula (2.2) and the assumption about the location of network
points it follows, that

ϕ(i)(x) = ϕ(i)(x, y) =
√
x2 + y2/αi, (3.8)

ϕ(j)(x) = ϕ(j)(x, y) =
√

(x− d)2 + y2/αj . (3.9)

Substituting the values (3.8) and (3.9) into the equality (3.7), we obtain
the equality

√
x2 + y2/αi =

√
(x− d)2 + y2/αj ,

that can be reduced to the form of the canonical equation of a circle

(
x+

dα2
i

α2
j − α2

i

)2

+ y2 =

(
dαiαj

α2
j − α2

i

)2

. (3.10)
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Now we prove that the circle defined by equation (3.10) coincides with the
boundary of the set (3.1). Assumptions about the choice of the coordinate
system means that ‖si − sj‖ = d, and according to formula (3.2)

v = si +
α2
i

α2
j − α2

i

(si − sj) =

(
− dα2

i

α2
j − α2

i

, 0

)
.

At the same time, (3.3) takes the form

r∗(αi, αj , si, sj) =
αiαj∣∣α2
j − α2

i

∣∣d.

Thus, the boundary of the disk O
(
v, r∗(αi, αj , si, sj)

)
coincides with the

circle (3.10). This means that the set D(i,j)(S) coincides with the part of
the plane that is bounded by this circle ∂O

(
v, r∗(αi, αj , si, sj)

)
and contains

the point si, i.e (3.1).
Let us turn to case 2). It is elementary, since in this case the difference

between the functions ϕ(i)(x) and ϕ(j)(x) coincides with the difference be-
tween the Euclidean distances from x to the points si and sj multiplied by
a positive number α−1

i . Therefore, the boundary of the dominance domains
coincides with the middle perpendicular to the segment [si, sj ], and the set

D(i,j)(S) is the half-plane that contains point si. Formula (3.4) is proved.
Let’s consider case 3). It is similar to case 1) if we interchange the points

si and sj . Therefore, we can similarly prove that the geometrical location
of the points for which (3.7) holds is a circle of radius (3.3) centered at the
point (3.6). However, since in case 3) the point si is located outside the
disk bounded by this circle, then D(i,j)(S) does not coincide with the circle,
but with its complement to the plane R

2, i.e. (3.5).

Definition 4. The generalized Dirichlet zone of the point si in the set M
for given numbers αi, i = 1, n is called the set

D(i)(S,M) ,

{
m ∈M : ϕ(i)(m) = min

j=1,n
ϕ(j)(m)

}
. (3.11)

The domains D(i)(S,M) are a generalization of the Dirichlet zones,
which were introduced for the equal circles covering problem. Dirichlet
zones are the geometrical places of points located no farther from one
of the elements of the si n-network Sn than from others. Moreover, the
generalized Dirichlet zones have a much more complex shape. In particular,
their boundary may contain circular arcs. In addition, they can be non-
convex and even multiply connected. From formula (3.11) it follows that the
generalized Dirichlet zones can be found as the intersection of the domains
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of dominance of the point with the M

D(i)(S,M) =M ∩
⋂

j=1,n

D(i,j)(S). (3.12)

The boundaries D(i)(S,M) can contain both segments and arcs of circles
of different radius. However, it is further convenient to pass to their
approximations, for example, by polygons.

3.2. Finding new centers

Definition 5. The Chebyshev center of a closed bounded set M ∈ R
2 is

the point c(M) satisfying the equality

h(M, {c(M)}) = min
{
h(M, {x}) : x ∈ R

2
}
= r(M), (3.13)

where h(A,B) , max
a∈A

min
b∈B

‖a − b‖ is Hausdorff half deviation between

compact sets A and B.

For any compact set M , there exists a unique Chebyshev center c(M),
and it belongs to the convex hull coM of the set M . The value r(M) in
(3.13) is called the Chebyshev radius of set M .

Lemma 1. For any closed bounded set M ∈ R
2, with r(M) > 0 and any

point x ∈ R
2 the following estimate holds:

r(M) ≤ h(M, {x}) − ‖x− c(M)‖2
2h(M, {x}) . (3.14)

Proof. If point x coincides with c(M), then inequality (3.14) becomes equal-
ity. Otherwise, we consider a nonzero vector z = x − c(M) and con-
struct a straight line l, which is perpendicular to z and passes through
the point c(M), as well as a semicircle Λ ⊂ ∂O(c(M), r(M)), located on
that half-plane relative to the line l, which does not contain x. According
to the properties of the Chebyshev center on any semicircle belonging to
∂O(c(M), r(M)), there is always at least one point m ∈ M . Indeed,
if Λ ∩ M = ∅ holds for some semicircle Λ, then the similar statement
Λε ∩M = ∅ holds for ε-neighborhood Λε. This means that all points of
the set M ∩ ∂O(c(M), r(M)) belong to an arc of a circle with an angle
γ < π. According to the properties of the Chebyshev center of a flat set,
it always belongs to the convex hull M ∩ ∂O(c(M), r(M)). But if all the
points of M ∩ ∂O(c(M), r(M)) belong to an arc with an angle γ < π,
then their convex hull does not contain the circle center. Thus, we have a
contradiction.

Among all points Λ, the closest to x are the intersections of Λ with
l by construction. Therefore, an arbitrary point m ∈ Λ ∩ M obeys the
estimation

‖m− x‖2 ≥ ‖z‖2 + r2(M). (3.15)
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We can easily transform estimation (3.15) to

‖m− x‖ − r(M) ≥ ‖z‖2
‖m− x‖+ r(M)

.

It follows from (3.15) that ‖m − x‖ ≥ r(M), which means that the
estimate can increased

‖m− x‖ − r(M) ≥ ‖z‖2
2‖m− x‖ . (3.16)

Since from the definition of the Hausdorff deviation h(M, {x}) ≥ ‖m− x‖
for any point m ∈M , then

h(M, {x}) − r(M) ≥ ‖z‖2
2h(M, {x}) .

If we transfer h(M, {x}) to the right side of the inequality and make the
reverse substitution of the vector z, then we get (3.14).

The basis for constructing a new array of coverage circle centers Ŝ =
{ŝi}ni=1 for the value S specified at the current step is the formula

ŝi =

{
kcc
(
D(i)(M,S)

)
+ (1− kc)si, D

(i)(M,S) 6= ∅,

si, D
(i)(M,S) = ∅.

, i = 1, n, (3.17)

where kc ∈ (0, 1] is a custom parameter. The meaning of the coefficient kc
is how quickly the coordinates of the covering circles change at each step.
Increasing kc makes it possible to increase the speed of the algorithm, but
reduces its stability.

The proposed Algorithm consists of the following steps. The first step
is to construct the initial position S(0) ⊂M of circles centers by stochastic
methods. Then according to formula (3.17), iterative changes of the coor-
dinates of the points are carried out to minimize value (2.1) for the current
array S. The generalized Dirichlet zones, in accordance with theorem 1,
are constructed by formula (3.12) as the intersection ofM with half-planes,
circles, and complements of disks. The stopping criterion is the fulfillment
of the condition of sufficient proximity h(Ŝ, S) ≤ h0 in the Hausdorff metric

for the newly constructed Ŝ and the old S networks. The parameters h0
and kc are set by the user.

The algorithm is improving, but it does not guarantee a global solution.

Theorem 2 (The properties of the iterative algorithm). For any compact
set M , set of positive numbers {αi}ni=1, kc ∈ (0,−1] and set of n points S
the following estimation holds

RM (Ŝ) ≤ RM (S), (3.18)
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where Ŝ is determined by formula (3.17).

Proof. To prove the theorem, we should show that for an arbitrary number
i, 1 ≤ i ≤ n, for which D(i)(M,S) 6= ∅, the following estimate holds

max
{
ϕ̂(i)(x) : x ∈ D(i)(S,M)

}
≤ max

{
ϕ(i)(x) : x ∈ D(i)(S,M)

}
, (3.19)

where ϕ̂(i)(x) , α−1
i ‖x− ŝi‖.

Let F (s) , h(D(i)(S,M), {s}) be the function equal to the Hausdorff
half-deviation of the compact set D(i)(M,S) from a one-point set, contain-
ing one element bfs. Definition 5 yields the estimate

F (si) ≥ r
(
D(i)(S,M)

)
= F

(
c
(
D(i)(M,S)

))
. (3.20)

The function F (s) can be represented as

F (s) = max
g

{‖s − g‖ : g ∈ D(i)(S,M)}.

It is easy to see that the function F (s) is convex. It follows from for-
mula (3.17) that the point ŝi is a convex combination of points si and
c
(
D(i)(M,S)

)
, which means that F (·) obeys the estimate

F (ŝi) ≤ kcF
(
c
(
D(i)(M,S)

))
+ (1− kc)F (si). (3.21)

The inequality F (ŝi) ≤ F (si) follows from (3.20) and (3.21). Multiplying
it by α−1

i we get estimate (3.19).
Definition 4 and formulas (2.1), (2.2) imply the equality

RM (S) = max
i=1,n

max
{
ϕ(i)(x) : x ∈ D(i)(S,M)

}
(3.22)

and the estimation

RM (Ŝ) ≤ max
i=1,n

max
{
ϕ̂(i)(x) : x ∈ D(i)(S,M)

}
. (3.23)

Formulas (3.22) and (3.23) may contain empty generalized Dirichlet zones
D(i)(S,M). However, since maximization with respect to i is performed
in (3.22) and (3.23), the estimates are determined only by nonempty sets
D(i)(S,M), i = 1, n.

If we substitute estimates (3.19) into inequality (3.23) for all i = 1, n for
which D(i)(M,S) 6= ∅, then we obtain

RM (Ŝ) ≤ max
i=1,n

max
{
ϕ(i)(x) : x ∈ D(i)(S,M)

}
.

This inequality and (3.22) imply the estimate (3.18).
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We approximate the generalized Dirichlet zones D(i)(M,S), i = 1, n, by
sets of points P (i). In the case when M is a convex polygon, the following
characteristic points are included in the set P (i).

1) The vertices of the polygon M , which belong to D(i)(M,S).

2) The intersection points of the boundary ∂D(i)(M,S) of the generalized
Dirichlet zone and the boundary ∂M of the set M .

3) The intersection points of the boundary ∂D(i)(M,S) of the generalized
Dirichlet zone and the boundaries ∂D(j)(M,S) and ∂D(k)(M,S) of two
mismatched Dirichlet zones i 6= j, i 6= k, j 6= k.

4) The intersection points of the boundary ∂D(i,j)(M,S) of the domain
of the dominance for i 6= j and the straight line λ, which contains the
segment [si, sj ], if these points belong to ∂D(i)(M,S).

As an approximation of the Chebyshev center of the set D(i)(M,S) in
formula (3.17) we take c(P (i)). Then we check the condition D(i)(M,S) ⊆
O
(
c(P (i)), r(P (i))

)
.

Note that to find sets of characteristic points, you need to check about n3

elements (if the number of covering circles is significantly greater than the
number of the polygon vertices). This is due to the fact that three arbitrary
generalized Dirichlet zones can have either one or two common points; each
one must be considered. Their coordinates are found as intersections of the
boundaries of the domain of dominance for points from S.

Now we give an estimate of the quality of the algorithm, based on the
formula (3.17) at each step. For short we will omit arguments inD(i)(S,M).

Theorem 3. Let we are given a compact setM ∈ comp(R2) and n-network

S
(k)
n , which is a result of k iteration of the algorithm. Then for the network

S
(k+1)
n obtained by formula (3.17) with kc = 1, the estimation holds

RM (S(k+1)
n ) ≤ RM (S(k)

n )−

(
min

{
α
(−1)
i ‖s(i)k+1 − s

(i)
k ‖ : i = 1, n

})2

2RM (S
(k)
n )

. (3.24)

Proof. Consider a certain Dirichlet zone D(i)(·) = ∅, i ∈ 1, n. Let us show
that the following estimate holds

h(D(i)(·), {sk+1}) ≤ h(D(i)(·), {sk})−
‖sk+1 − sk‖2

2h(D(i)(·), {sk})
. (3.25)

If the points sk and sk+1 coincide, then the inequality (3.25) takes the form
of equality, and so it holds. Otherwise, by construction, the point sk+1
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coincides with the Chebyshev center c(D(i)(·)) of the zone D(i)(·), and
h(D(i)(·), {sk+1}) equals to its Chebyshev radius. Therefore, (3.25) follows
from the estimate (3.14) in lemma 1.

By construction, the RM (S
(k+1)
n ) satisfies the estimate

RM (S(k+1)
n ) ≤ max

i=1,n
α−1
i h(D(i)(·), {sk+1}).

Taking into account inequalities (3.25), it can be reduced to

RM (S(k+1)
n ) ≤ max

i=1,n

(
α−1
i h(D(i)(·), {sk})−

α−1
i ‖sk+1 − sk‖2

2h(D(i)(·), {sk})

)
≤

≤ max
i=1,n

α−1
i h(D(i)(·), {sk})− min

i=1,n

α−1
i ‖sk+1 − sk‖2

2h(D(i)(·), {sk})
≤

≤ max
i=1,n

α−1
i h(D(i)(·), {sk})−

min
i=1,n

α−1
i ‖sk+1 − sk‖2

2 max
i=1,n

h(D(i)(·), {sk})
≤

≤ RM (S(k)
n )−

min
i=1,n

α−1
i ‖sk+1 − sk‖2

2RM (S
(k)
n )

,

that is equivalent to (3.24).

4. Computational experiment

The authors develop software for constructing coverings of a bounded
set by circles of various radii. It is based on methods of computational
geometry: finding the intersection and union of polygons and determining
the Chebyshev center of the polygon. Theorem 2 guarantees that applying
the algorithm does not deteriorate the properties of coverings. Theorem 3
gives an estimate of the algorithm speed.

Testing of the algorithm proposed in the previous section was carried out
using the PC of the following configuration: Intel (R) Core i5-3570K (3.4
GHz, 8 GB RAM) and Windows 10 operating system. Each experiment
was carried out with 5÷10 runs of the software, in each of which 100÷200
iterations were performed to change the coordinates of the centers of the
covering elements. The executed time is about 15 minutes. As covered sets,
we deal with polygons, including non-convex ones.

An indirect indicator σ(Ξn) of the covering quality is the ratio

σ(Ξn) =

∑n
i=1 µ(M)

µ
(
O(si, αir)

) (4.1)
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of the sum of the areas of the circles included in the coverage Ξn to the area
µ(M) of the figure M . The parameter σ(Ξn) is called the covering density.
Note that it differs from the classical definition of density, where one take
into account only the area of the part of circles that intersect M .

The quality index (4.1) can be easily calculated for figures of vari-
ous geometries. Moreover, it is invariant with respect to the compres-
sion/extension and plane motion transformations. It can be expressed in
terms of the parameter r as

σ(Ξn) =
µ(M)

πr2
∑n

i=1 α
2
i

.

In all the examples presented below, the solution is found by repeatedly
launching the developed software. The coordinates of the centers of the
circles corresponding to the minimum parameter r are used to restart the
computational scheme with the introduction of random perturbations.

Example 1. Let the setM =
{
(x, y) ∈ R

2 : y ≥ 0, x+ y ≤ 1,−x+ y ≤ 1
}

be the right triangle with vertices (−1, 0), (0, 1), (1, 0). It is required to find
the optimal covering Ξ11 of the triangle M by combining 11 circles whose
radii are proportional to the numbers αi = 1.5 for 1 ≤ i ≤ 3 and αi = 1
for 4 ≤ i ≤ 11; and Ξ12 with radii that are proportional to the numbers
αi = 1.4 for 1 ≤ i ≤ 2 and αi = 1 for 3 ≤ i ≤ 12.

The resulting set of covering circle centers of Ξ11:

S11 = {(0.4919, 0.2504), (−0.3319, 0.4741), (−0.7607, 0.1551),

(−0.3621, 0.1018), (0.2961, 0.6176), (0.8138, 0.0383), (0.0328, 0.7231),

(0.0807, 0.4287), (−0.0773, 0.8251), (0.2015, 0.1053), (−0.0791, 0.1441)}.
Here r ≈ 0.1912, the density of covering σ(Ξ11) ≈ 1.6935.

The resulting set of covering circle centers of Ξ12:

S12 = {(−0.1651, 0.4476), (−0.6898, 0.1718), (0.1239, 0.0572),

(0.2318, 0.6898), (0.6370, 0.1947), (−0.2118, 0.0572), (0.3422, 0.2042),

(0.4699, 0.4517), (0.2150, 0.3830), (−0.0238, 0.8243),

(0.4688, 0.0088), (0.8229, 0.0088)}.
Here r ≈ 0.1773, the density of covering σ(Ξ12) ≈ 1.7776.

Example 2. Let the set

M =
{
(x, y) ∈ R

2 : max{|x|, |y| ≤ 2,min{|x|, |y| ≤ 1}
}

be the non-convex dodecagon. It is required to find the optimal covering
Ξ7 of the dodecagon M by combining 7 circles whose radii are proportional
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to the numbers αi = 1.25 for 1 ≤ i ≤ 2 and αi = 1 for 3 ≤ i ≤ 7; and Ξ8

with radii that are proportional to the numbers αi = 1.4 for 1 ≤ i ≤ 3 and
αi = 1 for 4 ≤ i ≤ 8.

The resulting set of covering circle centers of Ξ7:

S7 = {(−1.4876,−0.0204), (−0.0156,−1.4970), (0.0099, 0.2295),

(−1.1758, 1.4887), (0.2729, 1.4970), (1.3757, 0.3739), (1.1176,−1.0571)}.
Here r ≈ 0.8844, the density of covering σ(Ξ7) ≈ 1.6637.

The resulting set of covering circle centers of Ξ8:

S8 = {(0.3227,−1.0558), (−1.0726,−1.5), (−1.1286,−0.0484),

(−0.6667, 1.4695), (1.4354,−0.5), (0.4349, 1.5), (0.2164, 0.3753),

(1.4354, 0.5)}.

Here r ≈ 0.7545, the density of covering σ(Ξ8) ≈ 1.6216.

Example 3. Let the setM =
{
(x, y) ∈ R

2 : |x| ≤ 1, |y| ≤ 1
}
be the square

with sides parallel to the coordinate axes and equal to 2. It is required to
find the optimal covering Ξ9 of the square M by combining 9 circles whose
radii are proportional to the numbers αi = 1.4 for 1 ≤ i ≤ 2, αi = 1.2 for
3 ≤ i ≤ 4, and αi = 1 for 5 ≤ i ≤ 9.

The resulting set of covering circle centers of Ξ9:

S9 = {(0.4555, 0.2012), (−0.7076, 0.4418), (0.7212, 0.6702),

(0.0134, 0.9486), (−0.9141,−0.5582), (−0.3822,−0.9497),

(−0.2336,−0.33), (0.9159,−0.5579), (0.4483,−0.7644)}.
Here r ≈ 0.4501, the density of covering σ(Ξ9) ≈ 1.8775. Figure 1 shows
the covering Ξ9.

Figure 1. Covering of the square by 9 circles.
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In order to verify the algorithms, a series of experiments was carried out
for the total number of circles n = 8. Radii can be equal to two values R
and r, while the ratio is R/r = 1.5. Cases from 0/8 to 7/1 are considered
(the first numeral shows the number of small circles, the second – large
ones). Table 1 presents the results of the calculations.

Table 1

Covering of the square by 8 circles

No Number of
small circles

Number of
large circles

Radius r Density σ

1 8 (0) 0 (8) 0.5212 1.7068

2 7 1 0.4677 1.5892

3 6 2 0.4386 1.5864

4 5 3 0.4164 1.6001

5 4 4 0.4092 1.7096

6 3 5 0.3851 1.6598

7 2 6 0.3717 1.6819

8 1 7 0.3701 1.8020

Note that the radii of the circles decrease monotonously with an increase
in the number of large circles. And when we switch from 2/6 case to 1/7
one, the difference is observed only in the third digit. One can also see
that the density of the covering behaves non-monotonously. There are two
local maximums 6/2 and 3/5 and two local maximums 4/4 and 1/7. One of
the maximums appears if we supplement table 1 with the case 0/8, which
coincides with 8/0. Thus, the hypothesis that in the best coverage, the ratio
of the number of small and large circles should be inversely proportional to
their radii was not confirmed.

5. Conclusions

We considered the problems of covering a bounded set on a plane by a
given number of circles whose radii, generally speaking, are different and
proportional with fixed coefficients to a parameter r. It is the objective
function to be minimized. We proved a theorem on the structure of the
influence zone of a point (generalized Dirichlet zone), which is the center
of the covering circle. An iterative algorithm for solving the considered
problem was proposed, the relaxation property was proved, and a speed
estimate was obtained.

Further research is aimed both at increasing the dimension of the prob-
lem, and at increasing the number of types of circles.
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О покрытии ограниченных множеств наборами кругов
различных радиусов

А. Л. Казаков1,2, П. Д. Лебедев3, А. А. Лемперт1

1 Институт динамики систем и теории управления им. В.М. Мат-
росова СО РАН, Иркутск, Российская Федерация
2Иркутский национальный исследовательский технический универси-
тет, Иркутск, Российская Федерация
3 Институт математики и механики им. Н. Н. Красовского УрО
РАН, Екатеринбург, Российская Федерация

Аннотация. Рассмотрена задача о построении оптимального покрытия
плоской фигуры объединением кругов. Радиусы кругов, вообще говоря, различны.
Каждый из них равен произведению некоторого положительного коэффициента на
общий для всех параметр r, который и является целевой функцией, подлежащей ми-
нимизации. Проведено аналитическое исследование задачи. Получены выражения,
позволяющие описать обобщенные зоны Дирихле для рассмотренного случая. Пока-
зано, что они существенно отличаются от классических зон Дирихле. Предложена
итерационная процедура коррекции координат центров кругов, образующих покры-
тие, которая основана на отыскании чебышевских центров областей влияния точек.
Показано, что она не ухудшает свойства покрытия. Предложен вычислительный
алгоритм, использующий метод мультистарта для генерации начальных положений
точек и итерационную процедуру. Выполнена его реализация в виде компьютер-
ной программы. Проведены численные эксперименты по построению оптимальных
покрытий наборами кругов при различных коэффициентах, определяющих ради-
ус каждого из них. Рассмотрены случаи двух и трех различных типов кругов. В
качестве покрываемых множеств взяты многоугольники: как выпуклые, так и невы-
пуклые, выполнена визуализация вычислений. Проведен анализ результатов расче-
тов, который позволил сделать содержательные выводы о свойствах построенных
покрытий.

Ключевые слова: оптимизация, покрытие кругами, обобщенная зона Дирихле,
чебышевский центр, итерационный алгоритм, вычислительный эксперимент.
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