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Complexity Lower Bound for Boolean Functions
in the Class of Extended Operator Forms*
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Irkutsk State University, Irkutsk, Russian Federation

Abstract. Starting with the fundamental work of D.E.Muller in 1954, the polynomial
representations of Boolean functions are widely investigated in connection with the theory
of coding and for the synthesis of circuits of digital devices. The operator approach to
polynomial representations, proposed in the works of S. F. Vinokurov, made it possible,
on the one hand, to uniformly describe all known types of polynomial forms of Boolean
functions, and, on the other hand, to generalize them to the case of expansions by the
operator images of arbitrary odd function, not only conjunction.

In the study of polynomial and, in the general case, operator forms, one of the main
questions is obtaining lower and upper bounds of the complexity of the representation
of Boolean functions in various classes of forms. The upper bounds of complexity are
actually algorithms for minimizing Boolean functions in a particular class of forms.

The lower bounds of complexity can be divided into two types: combinatorial and
effective. Combinatorial lower bounds make it possible to prove the existence of Boolean
functions, having high complexity, without finding the explicit form of these functions.
Effective lower bounds are based on explicit constructing Boolean functions that have
high complexity in a particular class of forms.

In this paper, using an algebraic extension of a finite field of order 2, we obtain a
lower bound for the complexity of Boolean functions in the class of extended operator
forms. This lower bound strengthens the previously known lower bounds for this class

* This work was supported by Russian Foundation for Basic Research, grant N 19—
01-00200.
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of operator forms and is becoming asymptotically optimal if the sequence of Mersenne
primes is infinite.

Keywords: Boolean function, lower bound, extension of finite field, Mersenne prime.

1. Introduction

In the initial work [9] Muller introduced several polynomial forms of
Boolean functions. Since that, these and many other polynomial forms
were widely investigated.

The uniform approach to polynomial forms of Boolean functions were
proposed in [12], using the notion of operators and their bundles. In
section 2 of the current paper we suggest another way to represent op-
erators and bundles, using vectors and matrices. Such a way could be
naturally generalized to multivalued functions, including functions over
finite fields [3].

One of the problems in the area of Boolean functions polynomial repre-
sentation is obtaining lower bounds of complexity in particular classes of
polynomial, and more general, of operator forms. This paper is devoted
to obtaining lower bound for the class of extended operator forms. To
achieve this result we developed a method for counting zeros in vectors
over arbitrary finite field, which is described in section 3.

An extended list of references on the complexity for polynomial forms
of Boolean functions and multivalued functions can be found in [11].

2. Matrix representations of bundles of operators

Definition 1. A word a, ...a; over the alphabet {0,¢e,p} will be called
n-ary operator.

Let us construct the map v from the set of operators to Boolean vectors
recursively as follows: v(ay,...a1) = v(a,) ® v(a,—;1...a;) for n > 2 and
v(d) = (11), v(e) = (01), v(p) = (10) for n = 1. The symbol ® denotes
the tensor product of vectors. For the sake of convenience let us introduce
the vector (1), which corresponds to the O-ary operator &, i.e. to empty
word. As tensor product ® is an associative operation we can simply write
v(a,...a1) =v(a,) @ @v(ap).

Let N = 2" and o!,...,0" be all pairwise different binary n-tuples
ordered lexicographically such that j = 1 + 05,2"7 ! + -+ 4 032 + 020
where o7 denotes ith component of the tuple o,
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COMPLEXITY LOWER BOUND OF EXTENDED OPERATOR FORMS 127

For every tuple S = (g1, ..., gx) of n-ary Boolean functions let us define
a matrix Mg in the following way:
My, ... My
Ms = oo (2.1)
MN2 o e MNN s
where M, = gj((fﬁ,...,alf). For every n-ary Boolean function g let us

define the tuple S, = (¢1,...,9y), assuming that for all 1 < j < N

9i(@ns . m1) = glan @ o) I L a @ oy I, (2.2)
Proposition 1. g(z,,...,21) = 2, ... 21 iff Ms, is an identity matriz.
Proof. Let g(xp,...,x1) = Ty - ... x1. By definition, S, = (g1,...,9~),
where g;(zp,. .., 21) = (2, ® oh ) (2 @ oY ). It Mg, has the
form (2.1), then Mjy = (of @ o /™) - ... (6F @ o) /™). The binary
tuples o!,..., 0" are ordered lexicographically. Thus, o' = (0,...,0)

and oV = (1,...,1). Further, o* is the k-th tuple from the beginning,
and ¥t is the j-th tuple from the end. For o, there is exactly one
tuple which differs from qk in each component. It is o —k+1 Conse-
quently, M, = (of @ oh ) ... (oF @ o) /™) = 1if and only if j = k.
Otherwise, Mj; = 0. This means that the matrix Mg, is the identity
matrix.

Conversely, let M be the identity N xN matrix of the form (2.1), and
let n-ary Boolean functions gy, ..., gy are given by gj(afb, co o) = My,
where 1 < j,k < N. Then gj(of,... ,0f) = 1 if and only if My, = 1,
ie. k=j. Further, gj(xp,...,21) = 1 only if z, = o7,,...,21 = 0. This
means that g;(zy,...,21) = (z, ®op) ... (x1 ®7]). Since (G3,...,57)

is different from o7 in each element, we have (57,...,57) = oV 71 and
—j+1 i1 .
therefore gj(n,...,21) = (xn ®on 7T ... (1 @ o) 7). This means

that (g1,...,9n) = Sy, where g(zy,, ..., 21) = Tp-.. -2y, and M = Mg,. O

Following [5], let us define the action of an operator a,, ... a; on an n-ary
Boolean function g as follows: a,, ...a1g = f, where for all 1 <m < n

fm—l(xna---wfma---wl)@fm—l(wnw-wxl)a if am = 0,
fo(@n, o 21) = < fre1(@n, .. 1), if 4 = ¢ (2.3)
fmfl(xna---,xm+1,fma$mfla---$l), if U = P;

and fo(zn,...,x1) = g(zn,...,21).
For every n-ary Boolean function f let us introduce the binary vector Vy,
assuming Vy = (Vi,...,Vy) where V}, = flok, ... ok) forall 1 <k <N.

Proposition 2. For every n-ary Boolean function g and every n-ary
operator A, ...ay if f =a,...a19, then Vy = v(a,...a1)Ms,.
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Proof. Let a,...a; be an n-ary operator. Recall through J, the set of
indices m for which a,, = 0, and through J, the set of indices m for which
a,, = p. Denote by P(J;) the set of all subsets of .J;, including the empty

set. First of all, note that since j =1+ ol 4.4 0{20 then

. 71 . . _A : y
oI = (0l o) 60l o)) (2.4)

holds for all 1 < j < 2™~! < N. Define sets of integers

I, = {1+ DDA P ‘ S e P(Ja)}.

SEJp seS
s<m ss<m

Obviously, j < 2™ for all j € I,,,. Also define the vectors V"™ = v(ay, ... a;).
By induction, we will show that if f,, is defined in the same way as in
(2.3), then V;™ =1 if and only if 2™ — j + 1 € I, as well as

fuldh o) = 3 gloh @ ol ot @al).
J€Im
By the basis, we have Iy = {1}, V? = (1), ¢! = (0,...,0). Thus, Vjo =1
if and only if 2° — j + 1 € Iy, and
Zg(az@a%,...,alf@(f{) =g(ok, ... 0% = folok, ... ob).
j€lp
By the step of induction, we take a,,.
1) If a, = 0, then I,;, = Iy, 1 UL}, 4, where I}, | = {j+2""1|j€ I, 1}
By the induction hypothesis, f,_1(ck,...,0%) =3 g(ck@a),... ot Dal).

jelmfl

. . . m—1 i4om—1
Thus, Zg(az@aﬁb,...,alf@o*{):Zg(afb@aﬁfz ,...,JIfEBJ{Jr )

je[:n71 jelmfl
k j k —J k j k —k k
= Z glor @ol,...,o0 @0, . ..,00 ®0]) = fm-1(0n, .., 00, ,00)
jelm—l
fn(ok o) = (68, o)+ fa(ok, G o)
= Z glop ®al,....,01 ®ol)+ Z g(op ®al,....,00 ® o))
§€Im—1 jers,
k j k ]
= Z glor®al,...,0f ®al).

J€Im

Also, we have V™ = (11) @ V™! = (Vlmfl, ce VZT;}, Vlmfl, ce VZT;})
Hence, if j < 2™~!, then V;™ =11if and only if 2m=l _j41¢€l,_1,and if

21 < j < 2™, then V™ = 1 if and only if 27" — (j =271 ) +1 € [ 1.
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In the first case, we have 2™ — (j +2™71)+1 € I,,,_1, in the second case we
have 2" —j+1 € I;;,—1 and, therefore, V™ = 1if and only if 2™ —j+1 € L.
2) If a,,, = ¢, then I, = I, 1,

fm(aﬁ,...,alf) = fm_l(aﬁ,...,alf) =
= Z g(aﬁ@aﬂb,...,alf@a{):Zg(aﬁ@aﬂb,...,a’f@a{).
J€Im—1 j€Im

Since V™ = (01) @ V1 = (0,...,O,Vlmfl,...,VQTnj), we have V" =1
if and only if 277! — (j — 2™71) + 1 € I,_1. The latter means that
2M —j+1¢€ Iy

3) If a,, = p, then I, = {j +2™" 1| j € I, 1} and

Zg(dﬁ@aﬁ;,...,a’f@a{'): Z g(oF @0l ... 68 @ol ... oF@ol)

jEIm jelm—l
= f1(0F, ... 58 oF) = flok, . oh).
In this case, V™ = (10) @ V"1 = (Vlmfl, A V;,Zi},O, ...,0) and, there-

fore, Vin=1 if and only if 2™ —j+1 € I,,_; or 2" — j+ 1 € I,,,, which
is the same. ‘ ‘
At this point, we have f(o¥,....0f) = X glok @ al,...,0F @ o)) for
JjE€In
[ =a,...a1g. Now consider k-th element of the product v(a,, ...a1)Ms,.
According to (2.2) it is equal to

N

no( koo N—j+l P N k ' kool
E Vitglop, ©@ o, 77, 0] @0y )= E gloy @ol,....00 ®oy).
j=1 J€n

This means that Vy = v(ay, ...a;)Ms, and completes the proof. O

Definition 2. A bundle of n-ary operators is a set A, which contains of
N pairwise different n-ary operators.

Definition 3. A bundle is called generated by a pair or just pair-genera-
ted if it can be represented as A = {a)...ai, a2 ... a3, ... a¥ ... a)'} where
a;“‘ = ajl- if af = 0 and a? = a;\’ if 0;? = 1. In this case, the operators
al...al and a) ...a} are called generators or generating operators for the
bundle .

An NxN Boolean matrix M represents a bundle of n-ary operators
2 = {ak. .. al | 1 <k < N}if the elements of k-th row of the matrix M
are pairwise equal to the corresponding elements of the vector v(ak ... a}).
As operators in a bundle can be ordered in various ways, a matrix, repre-
senting the bundle, is not uniquely determined. But all such matrices can

be reduced to each other by permutation of their rows.
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For the sake of convenience, let us introduce the following notation. Let
V = (WV1,...,Vin) be a Boolean vector. Then, the number of zero elements

of the vector V' is denoted by Z(V), i.e. Z(V)=#{i|Vi=0,1<i<m}.

Definition 4. Let % = {af...a¥ | 1 < k < N} be a bundle of n-ary
operators. If every n-ary Boolean function f can be represented as

f(z1,...,xp) =Cral .. al(zy-.. 2@ @CxaY ...l (2. . .-21) (2.5)

where C = (C4,...,Cy) is a Boolean vector, then the bundle 2 is called
base and the value Ly (f) = N —Z(C) is called the complexity of the repre-
sentation of Boolean function f by images of operators from the bundle .

Proposition 3. If2 is a base bundle of n-ary operators, and My is a ma-
triz, representing the bundle 2, then Mgy is non-degenerate. Moreover, for
arbitrary n-ary Boolean functions f it holds that Ly (f) = N — Z(VfMQTl).

Proof. Let A = {af ... a¥ | 1 < k < N} be a base bundle of n-ary operators.
For each j, 1 < j < N, take a Boolean vector C? = (C7,...,C%) and a
Boolean function fj(zy,...,z1) = (v, ® o IthY (@ Uiv*]Jrl) such
that fj(zn,...,z1) =Clal .. al (@ .. 21D - BChal ..ol (zy-... 7).
By Definition 4, such a vector CV exists for every 1 < j < N.

Let the function g(zy,,...,21) = @p-...-x1. By Proposition 1, the matrix
Mg, is the identity N x N matrix. Thus, from Proposition 2 it follows that
Vi, = Clo(a),...ap) @ - ® Clu(ay ...a)) or Vi, = CV My in vector form.
Consider a matrix whose rows are vectors Vp,...,Vy,. This is exactly
the matrix Mg, since f; satisfies (2.2). Let M be a matrix whose rows
are vectors C', ..., CY. Then we have the matrix equality Ms, = M My.
Since Mg, is the identity matrix, both matrices M and Mgy are necessarily
non-degenerate.

Let f be an arbitrary n-ary Boolean function and (2.5) hold. Then
Ly(f) = N — Z(C). As shown above, (2.5) can be represented in vector
form as V; = CMgy. Since Mgy is non-degenerate, the inverse matrix My !
exists. So C' = VyMy "' and Ly(f) = N — Z(Vy My ). O

Definition 5. The complexity of an n-ary Boolean function f in the set
K of base bundles of n-ary operators is the value Li(f), which is defined
as L (f) =min{Ly(f) | A € K}.

Proposition 4. For arbitrary n-ary Boolean function f and every set K
of base bundles of n-ary operators the value L (f) can be calculated by the
expression L (f) = N —max{Z(V;My') |2 € K}.

Proof. Let the matrices My and M represent the same base bundle 2 of
n-ary operators, and let f be arbitrary n-ary Boolean function. According
to Proposition 3, the expression (2.5) in vector form can be represented as
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Vi = CMy or Vy = C'Mj;, depending on the choice of the representing
matrix. Since the matrices My and M differ from each other only by
the permutation of the rows, the vectors C' and C’ also differ in the same
permutation of their elements. Thus, Z(C) = Z(C') and, consequently,
Ly (f) does not depend on the choice of the representing matrix. The rest
of the proof follows directly from Definition 5 and Proposition 3. O

Definition 6. For a given bundle 2 = {af ... a} | 1 <k < N}, generated

by pair, its extension Ey is a set of bundles By = {ALU{B’ [1 < j < N},

where B = {ak ... a¥ | 1<k <N, k#5}U{b,...b1} and b, ... by is an
N

operator such that v(b, ...b1) = 3 v(ak ... a}).
k=1

By Proposition 3.10 of [6], the operator b, ... b from Definition 6 always
exists and is uniquely determined by a pair-generated bundle 2{. By Theo-
rem 3.17, in [6] all bundles in Egy, including 2 itself, are the base bundles.
It is also true for n = 0, since A = {@} and Ey = {A} for this case.

Definition 7. The set of all pair-generated bundles of n-ary operators will
be called the class of pair-generated bundles of n-ary operators and will be
denoted as H™ . The set EXH™ = | ) Ey will be called the extended class

AcH™)
of pair-generated bundles of n-ary operators.

Proposition 5. For arbitrary n-ary Boolean function f

Ly (f) = mglég){N — Z(ViMy "), 1+ Z(ViMy ')}

Proof. Tt is known (see Expression (3) in [5]) that for every n-ary Boolean
function f it holds that Lg, (f) = min{Ley(f), N +1— Ly(f)}. By Propo-
sition 3, Lg, (f) = min{N — Z(VfMng), 1+ Z(VfMng)}. This leads to the
desired expression. O

Let S be a set of 2x2 Boolean matrices. The set S®" is defined as
SE" = {M,®- --@M; | M; € S}, where ® is Kronecker product of matrices.
The set S®° consists of exactly one 1x1 matrix which only element is equal
to 1. The set of all non-degenerate 2x2 Boolean matrices will be denoted
as KRros.

Proposition 6. Let 2 € H™ be a pair-generated bundle of n-ary opera-
tors. Then there exists a matriz M € KRO?" such that M represents 2.
And vice versa, for every matriz M € KRO?" there exists A € H™ such
that M represents 2.

Proof. Let 21 be a pair-generated bundle and b, ...b; and ¢, ...c; be its
generators. By induction on m, let us show that if 2, is the bundle
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generated by the pair by, ...b; and ¢, ..., then there exists a matrix
My,, € KROS™ representing 2,

The basis of induction is obvious, since Ao ={@}, v(2) = (1), My, = (1),
and Kro3? = {(1)}.

Let m > 0 and 2, = {a¥, . | 1<k < 27”} be generated by the pair
by, ... b1 and ¢, ... cq, such that a =b; 1fa] = 0 and a = ¢; 1fa = 1.

{v(ak, ...a¥) | 1< 1~c<2m 1}—{v(bm)®(k al)\l k< 2m n

A1 -
since 0, = 0 whenever 1 < k < 2™~!. This means that the 2m~1x2™
matrix My, whose rows are the vectors v(al ...al),...,v(a2" ' ...a2""),
can be expressed as My = v(b,,) ® My, , if the vector v(b,,) is considered
as 1x2 matrix. Similarly, the 2m~1x2™ matrix M; whose rows are exactly
the vectors v(a2, L a%m71+1), v(a2’ .. a2™), can be expressed as
M = v(¢y,) ® My, ,. Thus, the 2" x2™ matrix, consisting of the rows of
the matrices My and M7, represents the bundle 2l,,, and can be denoted by
My, . Moreover, My, = M*® My, ,, where M* is the 2x2 matrix, whose
rows are v(b,,) and v(c,, ). Since b, and ¢, must be different (otherwise the
set Ay, contains less than 2™ elements), the vectors v(b,,) and v(c,,) are also
different and non-zero. This means that M* is non-degenerate and, thus,
belongs to KROy. Hence, by the induction hypothesis, My, € KRog@m.
Since A =2, we have a matrix M € KRO?", which represents 2.

Conversely, let M = M,, ® --- ® M, where M; € KrRO2 and

M;[0,0] M;[0,1
= (aeld) arfin )

By the definition of Kronecker product, the k-th row in M can be written
as the vector (M, [oF,0] M,[0F 1)) ®--- ® (M;[o¥,0] My[o¥,0]). Since the
rows of each matrix M; are non-zero and are not equal to each other, there
are unary operators b; and ¢; such that the first row in Mj is represented by
the vector v(b;) and the second one by the vector v(c;). Moreover, b; # ¢;.
Thus, the k-th row of the matrix M can be represented as v(ak)®- - -@uv(a¥)
where af =bj; if aé‘? =0 and af =g if af = 1. By Definition 3 the bundle
2 = {ak...af | 1 < k < N} is generated by the pair of the operators
by ...01, ¢y...c1, and the matrix M represents 2. O

Corollary 1. For every n-ary Boolean function

Ly (f)= min {N - Z(V;M),1+ Z(V;M)}.

MEeKroS"™

Proof. By Proposition 5 Ly, () (f) = mu(n iN Z(Vy My b, 1+Z(Vfngl)}.
AeH "™
By Proposition 6 Ly, o (f) = min {N Z(ViM—Y), 1+ Z(ViM 1)}
MeKro
Since the set KROo consists of all non—degenerate 2x2 matrices, a matrix
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M Dbelongs to KRO?" together with the matrix M~'. It follows that

Lo (f) = min@ {N-Z(ViM), 1+ Z(V;M)}. O
MeKrog™

3. Counting zeros in vectors over finite fields

In this section several notions of theory of finite field will be used. Non
familiar reader can obtain missing information in [7].

Let F4s be a finite field of order ¢°, and let ¢ be its primitive element.
Let ¢ be a linear map from finite field [, onto its subfield [, such that
l(aB +0) = al(B) + £(5) for every a € Fy and 3,9 € Fys.

Proposition 7. #{t | /(¢(')=0,0<t< ¢ -2} =¢ ' — 1.

Proof. For each a € [y, denote by S, the set {8 € Fys | £(8) = a}. Since
¢ is onto, every S, is non-empty. Let us fix some § € S;. For each a,
consider the set S!, = {ad+ | B € Sp}. Since £(ad + ) = a for all 5 € Sy,
Si, C Sg for every a € Fy. As ad + 1 # ad + 52 whenever 31 # (2, we get
Sl = S, and #S, = #Sy. The sets S, are pairwise distinct and together
contain all elements from Fys. Thus, #5, = #F s /#F, = ¢*~1. Therefore,

AL 0(C) = 0,0 <t <" =2 = #(So\ {0}) = ¢+ — 1. 0

For each vector V' = (V4,...,V,,) which components belongs to the field
Fgs put £(V) = (((V1),....£(Vp)).

For integers t and j let us define series of maps from [Fys to complex
numbers as follows: Xj(Ct) = ¢ 2mJt/T where 1 = %. It is easy to see
that the map x; is a multiplicative character of finite field [Fs.

Let p be a prime integer such that ¢ = p* for some integer k. An absolute
trace for finite field [, is defined by Try(a) = a?’ +--+a? " foralla e Fy.
It is known that for every a € [, the value Tr,(a) belongs to Z,. Let us
define a map ¢, from [ s to complex numbers, which maps each element
B e Fygs toy,(B) = e2miTra(L(B)/P 1t easy to see that the map 1, is an
additive character of finite field [ s.

Definition 8. A Gauss sum for multiplicative character x; and additive

character 1, of finite field [ s is defined by G(x;,v,) = qsi2 Xj(Ct)i/Je(Ct)'
=0

It is known (see theorem 5.11 in [7]) that if X, and ¢, are both non

trivial, then |G(x;,v,)| = ¢*/%. Tt is easy to see that X, is non trivial for
all integers j # 0 (mod ), and 9, is also non trivial for above defined ¢.
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Lemma 1. Let a vector V.= (¢4, ..., () for some integers dy,. .., dy,
r=2=t w= e/ Then Z(U(V)) = LEN + R(V), where R(V) is

given by (V) = 'S Glx, ) 35 .

Proof. The proof technique is taken from Chapter 12 of [4].

First of all, note that F, = {0} U{¢{™ | 0 < m < ¢ — 2}, since (" is a
generator of the multiplicative group of the subfield F,. As (™" € [, and
¢ is linear, we have (™) = ¢™¢(¢'). Thus, if £(¢?) = 0, then there is a
unique integer ¢ such that 0 <t <7 —1,d =t (mod ), and £(¢*) = 0. Let
us apply this observation to Z(¢(V')) as follows.

N
>t (3.1)
2(¢%

The following well-known equation can be easily proved if we consider it as
a geometric progression.

r—1 . o
Z =i )T ?f d=t (modr) (3.2)
, 0 ifd#t (modr).

Applying this equation to (3.1), we get

1 r—1 N r—1 1 r—1 r—1 ‘ N ‘
ZWw)) = . w1 = Z( w*Jt) Zwﬂdk (3.3)
t=0 k=1 j=0 7=0 t=0 =
€(¢t)=0 €(¢h)=0

Introduce the value E7 as follows and, using similar transformations as
in (3.1) and observing that w™/¢ = w™7* whenever d =t (mod ), we get

q°—2 r—1 q°-2 r—1
ZRS S ol SUSTE S0 S BT i
— —0 d— =0
E(Ct§:8 K(Ct§:0 dzz?(mod r) K(Ct) d t(mod r)  £(¢H=0

~+ — 1. Using the equality w" = 1, we get

q°—2 q—2q°—2 a-2q¢°-2
E’;< = E w It — Zw E wa](tfmr)
t=0 m=0 t=0 m=0 t=0
((chH=¢mr ((¢tmm=1

If 0 < j < r, the first sum is zero, as indicated in (3.2). So we have

q—2q°-2 q°—2
D)) S
m=0 t=0 t=0
£(¢h)=1 £(¢t)=1
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Let v = *™/P_ Since Tr,(a) takes each value from Z, k times when a runs
through all values from [, it follows that

q—2
Z yTra(C™) — ) Trg(0) 4 Z pTrala) — _q, (3.4)
m=0

ackg

Split the Gauss sum G(x;,,) by zero and non-zero images of ¢:

qs—2 q5—2 q—2q°—2
Glx; ) =D (¢ =D x, (¢, (¢ + DD x, (€, (¢
=0 o(chy=o " =g

q372 qsi2 q572
SN = S w IO = 3w — B
t=0 t=0 t=

4(¢h=0 £(¢t)=0 ¢(¢t)=0

q—2 qs—2 q_2 qs_2 '
X (Ct)%(ﬁt) = w Ity Trq ((Sii I Z v )Zw—](t mr)
m=0 t=0 m=0 t=0
(¢t=cm ¢ ct)=c"“" W mri =Y
CI*2 q372 q
= VTrQ(CmT) Zw—jt Z t Z VTrq(Cm'r Z w _ ;
m=0 t=0

=
Putting it all together, we have G(x,,¢,) = ;7 E} and

= 1 1
Zw It = —Ej = 5G(X1,wl)

1 r—1 N 1 r—1 r—
2V =5 (1) 1+ 2 () e =
t=0 " k=1 j=1 t=0 k=1
£(¢H)=0 £(¢t)=0
1 * N _ r—1
N Ej 1« Ej jdk ¢ —1 Jdg
_7@]—1 ;Zq_lkl N qs 1 jz J’¢4 Zw

This completes the proof. O
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Lemma 2. LetV = (¢%1, ... (d"q)® @(¢M, ... ¢ha) for some integers

dit,...,dig, .. dp1,. .. dpg, 7= q 11, w = e2™/" Then
qsfl_l
Z((V)) = qsi_lq’H-R(V),

where R(V) = = Z G(x;: %) H (w4 ... 4 wida) . Moreover, if r is

prime and for every t 1<t <n, among the numbers dy1, . .., dy, there are
incomparable modulo r, then R(V) =0 ((g—2+2cos Z)") = o(q").

Proof. The number of elements in the vector V is equal to ¢”. Let Vi
denote the k-th element in V. Each integer k in the range 1 < k < ¢" can be
uniquely represented as k = 1+(k,—1)¢" 14 (kp_1—1)¢" 24+ - -+ (k1 —1)¢°,
where 1 < k; < ¢, 1 < j < n. By the definition of tensor product ®,

Vi, = (kn - Dk, V), = ¢k Tk On the other hand,
n q"
H (wjdtl 4o+ wjdtq) - Zka
t=1 k=1
where Dy, = witnkn . . i%k = wj(d"kn+"'+d1k1), referring to the previous

representation of k. After this observation, the first part of Lemma 2 is
essentially Lemma 1, slightly reformulated.

Now consider the case when r is a prime integer, and evaluate the value
of |[R(V')|. By Theorem 5.11 in [7], |G(x;,%,)| = v/¢%, since 1, and ¥, are
nontrivial characters if 0 < j <r — 1.

Consider the value of |[w/¥1 + ... 4+ wi%a|. Without loss of generality, let
d¢1 and dg be incomparable modulo r. Thus, denoting d* = dyo — dy1,

w1 | = It 14 I I () | 1 I g —2

As wit = 2md™ /7w have

‘1_|_wjd*‘ — \/(1 -+ cos 2”id*)2 + sin? @ = \/2 + 2cos 2W£d* = Q{COS %d*‘

Since j and d* are relatively prime with r, we have ‘COS %d*{ < 1 and,

moreover, ‘cos %‘ < cos 7, which completes the proof. O

WzBectusi IpKyTCKOro rocyjapCTBEHHOIO yHUBEPCHUTETA.
2019. T. 30. Cepusa «Maremaruxas. C. 125-140



COMPLEXITY LOWER BOUND OF EXTENDED OPERATOR FORMS 137

4. Lower bound in the class of extended operator forms

Theorem 1. Let p = 2° —1 be a Mersenne prime, £ be a linear map from
finite field Fos onto Fo, ¢ be a primitive element of Fas, and n-ary Boolean
function f is represented by a vector Vy = £((1,()®™). Then

L) > (5= 5, ) 2" = o) (41)

Proof. Let M € Kro3". Then M = M, ® - -- ® My where M; € KRO,.

= (1, Mp) @ --- @ ((1,¢)My))

oo {(12) () (31) (10) (L) (4}

(L OM; € {(1,), (1+¢,¢), (1,140, (¢, 1), (€, 14+6), (1+¢, 1)} As (isa
generator of the multiplicative group of the finite field Fos there exists an
integer ¢ such that 1+ ¢ = ¢* and 1 < t < p. Recall also that 1 = ¢°. Since
0, 1, and ¢ are incomparable modulo p, we can apply Lemma 2, which gives

us the following: Z(VyM) = 232;1_7112" +0(2") = (% - ﬁ) 2" + o(2") for

every M € KroS™.

By Corollary 1, Ly .y (f) = min_ {2" — Z(V;M),1 + Z(V;M)}.
MeKroZ™
Thus, Ly o0 (f)= min {<l+l>2n—02" ,(l—l>2n+1+o on }
ExH( )(f) MeKnoS™ 2 T 9p ( ) 27 2p ( )
which leads us to expression (4.1). O

Note that the largest currently known Mersenne prime is 282589933 1 [1],
From Theorem 1 it follows that there exists an n-ary Boolean function

[, such that Ly qo(f) = (% - +> — 0(2™). This is asymptoti-

282589934 _9

cally stronger than the lower bound of the form Ly ) (f) > ( % — 1—12) 2n,
previously obtained in [5].

Corollary 2. If the sequence of Mersenne primes is infinite then for every
€ > 0 there exist an n-ary Boolean function f, such that

LEXH(n)(f) = <% — €> 2" — 0(2").

Proof. Given ¢ > 0 take a Mersenne prime p such that p > 2_15 Since the
sequence of Mersenne primes is infinite, such p exists. Thus, 2Lp < g, and
using Theorem 1, we obtain the desired result. U
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5. Conclusion

In this paper we have proposed a general approach to obtain lower
bounds of complexity in a certain class of polynomial forms of Boolean
functions. Lemma 6 and lemma 8 in [2] can be considered as a special case
of lemma 1 and lemma 2 of this work. As showed in [2] (see theorems 1
and 2) lower bounds in [8;10] can be also obtained as a consequences of
lemma 1 of this work.
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HwuxHsis oneHKka cJioyKHOCTU OysieBbIX (DYHKIUII B KJjacce
PacCIIMPEHHBIX ONEePaTOPHBIX (opM

A. C. Bamok

Hpxymexutii 2ocydapemeennnii ynusepcumem, Hprxymex, Poccutickas
Dedepayusn

Awnnoranusi. IlommHoMuanbHbIe TpeACTaBICHNsT OYIEBBIX (DYHKIINI AKTUBHO UCCIIE-
JIYIOTCsI B CBSI3W C IPUMEHEHNEM B TE€OPUU KOJMUPOBAHUS U JIJIsSI CAHTE3a CXeM IU(MPOBBIX
YCTPORCTB, HAYUHAasi ¢ OCHOBoOIOJIOrameil paborel Mionnepa. OneparopHblil moIx0m K
MMOJIMHOMUAJIBHBIM TIPEJICTABIEHUSIM TIPEJIJIOXKEHHBIN B paborax BUHOKYypOBa MO3BOJIWII,
C OJTHOI CTOPOHBI, €AMHOOOPA3HO ONMMCATH BCE M3BECTHBIE BUBI MOJUHOMUATIBHBIX (hOpM
Oy/1eBBIX (PYHKIUIA, C APYTON CTOPOHBI, 0600IIUTEL UX HA CJIydail Pa3/IoXKeHUii 10 00pa3oM
HEYETHBIX DYHKIINAN, OTIMIHBIX OT KOHBHIOHKITAH.

IIpu uccienoBaHuy MOJTMHOMHUAJBHBIX U, B OOIIEM CJIydae, OMePaTOPHBIX (bOPM OJIMH
W3 TJIABHBIX BOIIPOCOB — 9TO TIOJIYYE€HHWE OIEHOK CJIOXKHOCTH IPEICTABICHUST OYJIEBBIX
GbyHKIMIT B PA3IMIHBIX Kaaccax ¢popm. BepxHre OleHKH CITOXKHOCTA (DAKTHIECKH MIPEI-
CTaBJISIIOT COOOI aJIrOPUTMbI MUHUMU3AIUN OYJIEBBIX (DYHKIMI B TOM HJIM UHOM KJIAcCe
dopm.

HuzkHre olleHKY CJIOXKHOCTH MOYKHO pa3euTh Ha JBa BUJa: KOMOMHATODHBIE U (-
dekTuBHble. KOMOMHATODHBIE OIEHKM ITO3BOJISIOT JIOKA3aTh CYIIECTBOBAHUE OYJIEBBIX
(bYHKIMI, UMEIOIINX BBICOKYIO CJIOXKHOCTh, 6€3 HAXOXKJIEHWsI sIBHOIO BHA TUX (DYHK-
nuit. 9bPEKTUBHBIE XKe HUKHUE OIEHKN OCHOBAHBI Ha, KOHCTPYUPOBAHUU B SIBHOM BH/IE
Oy/1eBBIX (PYHKIUI, MMEIOIUX BBICOKYIO CJIOKHOCTb B TOM MJIM MHOM KJjiacce (popM.

B macrosmeit pabore ¢ MCIIOIB30BAHUEM AJTeOPANIECKOrO PACIINPEHUS KOHETHOrO
IOJIsI TIOPSIIKA 2 TOJIyYeHa HUXKHsIsI OIIEHKa, CJIOKHOCTU OyJIeBBIX (DYHKIIMI B KJIacce pac-
IIAPEHHBIX OMEPATOPHBIX hopM. /laHHAas OlleHKA YCHINBAET paHee N3BECTHBIE OIEHKY JIJTsT
JAHHOTO KJIACCA OMEPATOPHBIX (DOPM U OYIEeT SBISATHCS ACUMIITOTUIECKU ONTUMAJIBHON
B CJIydae, eCJI MTOC/IeI0BaTE/IbHOCTh MPOCTHIX urces MepcenHa GeCKOHETHA.

KuaroueBrbie cioBa: OysieBbl (DYHKIHMU, HUKHHUE OIEHKU CJIOXKHOCTH, DPACIIHPEHUE
KOHEYHOIO I0JIsI, TIPOCThie uncia MepceHHa.
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