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Abstract. Multioperations are operations from a finite set A to set of all subsets
of A. The usual composition operator leads to a continuum of closed sets. Therefore, the
research of closure operators, which contain composition and other operations becomes
necessary. In the paper, the closure of multioperations that can be obtained using the
operations of adding dummy variables, identifying variables, composition operator, and
operator with the equality predicate branching is studied. We obtain eleven precomplete
closed classes of multioperations of rank 2 and prove the completeness criterion. The
diagram of inclusions for one of the precomplete class is presented.

Keywords: closure, equality predicate, multioperation, closed set, composition, com-
pleteness criterion.

1. Introduction

Discrete functions defined on a finite set A and taking values in the set of
subsets of A are widely considered as a generalization of classical functional
systems of k-valued logic. Partial Boolean functions, hyperfunctions, and
multifunctions with respect to the composition operator were studied in [2—
6;12;13;15].

The superposition operator leads, as a rule, to a countable or continuous
classification; therefore, closure operators that generate finite classifica-
tions of functions are of interest. Such operators, in particular, include
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the parametric and positive closure operators [7], the operator with the
equality predicate branching (FE-closure operator) [8]. An investigation of
the last operator on the set of Boolean functions, partial Boolean functions
and on the set of functions of k-valued logic can be found in [8-10]. All
E-closed classes for the set of partial Boolean functions were obtained
in [11]. The completeness criterion for the E-closing operator on the set of
hyperfunctions of rank two was proved in [14].

Suppose Fy = {0,1} and «; € Eo, i € {1,...,n}; then (aq,a,...,a,)
is called a binary set or just a set and is denoted by a. Let n be a length
of &. If the length of the binary set & is not indicated, it is determined by
context.

By M- denote a set of all rank two multioperations, and it defines as
follows

Moy, ={f|f:Ey — 252}, MQ:UMM.

In what follows, we will not distinguish between a set of one element and
an element of this set. For the set Es, we will use the notation ”—" (dash)
and empty set we will denote as ”+”. Instead of term the "multioperation”,
sometimes, we will use the word ”operation” if this does not confuse.

The set M, contains the set of hyperfunctions (Hj), the set of partial
Boolean functions (O3), and all Boolean functions (Os):

H2,n = {f | f : ESL — 2E2 \{@}}, H2 :UH2’TL;
03, ={f|f:E} - BU{o}}, 03 ={JO3,;

Ogn ={f| f:E5 = Ey}, Oy = JOop.

The n-variable multioperation f will be represented as a vector
(Tgs---,7i), where 75 equals to f(&). Such vectors have the form (f(0) f(1))
and (f(0,0) £(0,1) f(1,0) f(1, 1)) for unary and binary multioperations
respectively.

Suppose f(z1,...,xn), fi(T1,- - Tm),---, fulT1,...,Ty) are multiop-
erations.
The g(z1,...,%n) is said to be Sy-composition of

f(fl(xl,"',xm)"",fn(xl"",xm))
if
g(a17---7am): U f(/Bla---a/Bn)a

Bi€ fi(a1,...,0tm)

where (a1, ...,am) € B
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The composition operator defined in that way allows us to find multi-
operation values on the subsets of 262, Moreover, we consider the element
of such sets as a constant function.

Example 1. f(0,—,1) = £(0,0,1) U f(0,1,1) and f(0,%,1) = .

We say that the multioperation g(z1,...,x,) is obtained from the func-
tions f1(z1,...,%n), fo(x1,...,2,) using the operator with the equality
predicate branching (E-operator) if for some 4, j € {1,...,n} the following
relation holds:

TR
g(xh.”’xn) _ {fl(xh 7wn)7 1L 7 ‘ij

fa(x1,...,xy,), otherwise.

The set of all multioperations that can be obtained from the set QQ C My
using the operations of adding dummy variables, identifying variables, Si-
composition and E-operator is called ESy-closure of set Q and is denoted
by [Q].

The function obtained by adding dummy variables will be denoted by
the same symbol as the original one. Thus, if g(x) is some multioperation,
then g(x,y) is the operation obtained by adding the dummy variable y. In
the future, we will not discuss this separately.

A set of multioperations that coincides with its closure is called an ESy-
closed class. We say that the set P C @ generates an ESp-closed class @
if [P] = Q. Therefore P is ESy-complete in Q.

The P C M is said to be the precomplete set in Ms if [P] C Ms, but
[PU f] = Mj for any f ¢ P.

Let R™ be an m-place predicate on 22 of the form

Rm = {(0411,...,Ozlm),(agl,...,agm),... (Ocpl,... ,Ozpm)}.

The multioperation f(x1,...,x,) preserves predicate R™ if for any n sets

(5117--- 751m)7---7(6n17--- 7Bnm)

from the predicate R™, the set

(f(/8117"' 751771)7--- 7f(/8n17--- 7Bnm))

belongs to R™.

Pol R denotes the set of multioperations preserving R. Moreover, m-
place predicate containing n sets will be set by a m x n matrix, in which
the columns are sets from the predicate.

In the general case, the set of multioperations preserving a particular
predicate is not necessarily closed with respect to composition. But the
following lemma holds.

WzBecTusi IpKyTCKOro rocyjapCTBEHHOI'O yHUBEPCHUTETA.
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Lemma 1. If the operation f is obtained by a composition of operations
g, g1, -- -, 9m that preserve some predicate R, then operation f on binary
sets from R will necessarily return a set (not necessarily binary) from the
predicate.

2. ESp-closed classes

Consider the following 11 sets of multioperations:
Kl :{f | f(O,,O) € {0’_}}; K2 = {f | f(l,al) € {1’_}};
Ky ={f1f(0,...,0) € {0,x}}; Ky ={f | f(1,...,1) € {1, x}};
K5 =03; Ko = Hy; K7 = {f | f(&) € {x,1,-}};

Ks = {f | (&) € {+,0,—}}; Ko = PolRo; Ry = ((1’ 0 :>;

01 % % %01 —

Kii={f1|*€f(0,...,00Uf(1,...,1) or f(0,...,0)=0 and f(1,...,1)=1}.
Theorem 1. The sets K1 — K11 are ESp-closed.

Proof. Tt is easily proved that the sets K1 — K are ESy-closed.
Consider the set Kg. Let multioperations f, f1,..., fin preserve Rg and
multioperation

g(x1,.. ) = f(filzr, o xn)y ooy fin(Z1, oy 20))
does not preserve the predicate Rg. Then
01 — 01l % x*x ——01-—01
9(10—)“{0101—0 1***——}7&&
Therefore
01 01l % *%x ——01-01
g<10>m{0101—0 1***__}7&&

But this contradicts Lemma 1.
Consider the operator of equality predicate branching for Kjy.

Let
7.Z'm) _ {fl(wl,... ,wm), if Tg = Ty,

Ti,... :
oo fo(x1,...,xy), otherwise.

Suppose that g does not preserve the predicate Ry, so

01 01l *x*%x*x ——01-01
9<10>ﬂ{0101—01***——}7§@'
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We see that in 2 x 12 matrix the elements in (1,7) and (1,j) positions
coincide if and only if they coincide in (2,) and (2, j) positions.

01 . . 01 . . 01
Thus, g 10 coincides with f; 10)° coincides with fs < 10 )
It contradicts the fact that fi and fo preserve Ry.
The ESp-closure of the remaining sets is verified similarly. O

Theorem 2. For all Kl,... ,K11 ’LfZ #], then Kz g Kj.

Proof. The validity of the statement follows from Table 1. There is an
unary multioperation f at the i-th row and the j-th column in the table

such that f € K; and f ¢ K;. O
Table 1
The pairwise difference of sets K1 — K11
Ky K K3 Ky Ks K¢ Kr Kg Ko Kio Kui
K1 X Ox —— —— —— 0x 00 01 00 00 00
Ko *1 X 11 - —= *1 01 01 11 - — - —
K3 xx 00 X 0— 0— #x 00 01 00 0— 00
Ky *k Kk 11 X —1 *ok 01 01 11 11 11
K5 Kk K% 11 00 X *k 01 01 11 11 11
Ks 11 00 11 00 - — X 00 11 00 - — - —
K *k *k —— —_ - = *ok X 11 11 11 —1
Ks xx 00 —— ——= —= xx 00 X 00 00 00
Ko 10 10 10 10 —— *ok 01 01 X —— ——
Kio *% K% 10 10 *— Kk 01 01 —=x X 10
K *ok *k 1% *0 *— *k 01 01 —x 0111 X

3. Completeness criterion

Let fx, be a multioperation that does not belong to K; (i € {1,...,11}).
Lemma 2. 0,1, fx;, fxs] = Moa.

Proof. Obviously, [0,1,%, —] C [0, 1, fx,, fxs]- In paper [9] it is proved that
[0,1,%] = O3. In [1] it is shown that the set O3 is precomplete in My with
respect to the composition operator. Thus, the lemma is proved. ]

Lemma 3. If g1(x) = (——), g2(w) = (10), then [g1, 92, [Ks5, fKes frcs] = M.

Proof. Substitute g;(x) and g2(z) into the multioperation fg,. Consider
the cases when we obtain multioperations u;(z) = (0—) and ua(z) = (—*).
The other cases reduce to this one or Lemma 2.

WzBectusi IpKyTCKOro rocyapCTBEHHOIO yHUBEPCUTETA.
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Let v(x1,x2) = g2(x2,x2). Substituting us and g2 in v we get

v(uz(z2), g2(72)) = g2(u2(w2), g2(22)) = (0%).

Using the multioperations g; and (0x) it is easy to get a constant 0.

Substitute g2(z) into the multioperation fr,. We get four operations
s1(x) = (0%), sa2(x) = (1x), s3(x) = (—x), s4(x) = (xx). Consider the last
one. Using the equality predicate branching operator we get

g2(x1), if 1 = @;
t(r1,x2) = = (1*xx0).
(@1,22) {34(951), otherwise; ( )

Thus we have t((0—)(z2), (—0)(z2)) = (11). Now, by Lemma 2, we obtain
that [g1, 92, fKs, [Kes fKo) 1S complete in M. 0

Lemma 4. Ifgl(w):(__)hgz(x):(ll) Then [917927fK27fK57fK67fK7]
1s complete in Ms.

Proof. Tt is enough to obtain the constant 0 and use Lemma 2.

The composition fk,(1,...,1) defines the unary operation v; = (00) or
vy = (x%). There is a binary set (aq,...,q,) for the multioperation [,
such that fx.(a1,...,a,) =0.

Let h(z) = fx,(ui(x),...,u,(x)) and

( ) Xy, if ay = 0;
u;(xr) =
' 1, if o = 1.

Then h(z) is one of the following operations:
t1 = (00), ty = (O*), ty = (01), ty = (O—).

Clearly, t2(g1(z)) = 0, therefore, it remains to consider two cases for t3
and t4.

Let
va(x1), if 1 = xo;

p(xy,22) = {

ts(x1) (or t4(x1)), otherwise.

The composition p(gi(x2), g2(x2)) defines the constant 0. O
(

Lemma 5. Ifgl(x) = (__)’.92 x) = (1—), then [glag2,fK2afK5,fK6,fK7]

1s complete in Ms.

Proof. 1t is enough to obtain constant 0 or constant 1. One of 8 unary
multioperations can be obtained by identifying variables in fx,:

hl = (00), h2 = (*0), h3 = (0*), h4 = (1*),
h5 = (10), h6 = (—0 5 h7 = (**), hg = (—*)
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The first four cases allow us to obtain the necessary constant.

Consider hs = (10). In this case, we have following operations g3(x) =
(0-), g4(z) = (—0), and g5(z) = (—1). There is a binary set (ai,...,an)
for the multioperation fg, such that fx,(aq,...,a,) = *. Let us consider
cases when a composition with an external operation fg, and internal hs
(or variables identification) defines unary operations ¢;(x) = (x%) or to(x) =
(x—).

Using the equality predicate branching operator from multioperations

(1010) and (% * % %) we obtain u(xi,ze) = (1 % % 0). Superposition
u(gs(z2), g4(x2)) defines the constant 1. To conclude the proof, it remains
to note that hs(t2(z2), g5(x2)) = (x0). O

Lemma 6. Ifgl(x) = (__)?92(x) = (00)’ then [glaQQ,szafK5,fK5’fK9]
1s complete in Ms.

Proof. The proof of this statement is similar to the proof of Lemma 4. [

Lemma 7. If gi(z) = (——),g2(x) = (+x), then [91, 92, fKs: fKs5: [K6, [Kr]
1s complete in Ms.

Proof. By identifying variables in fg., we can obtain a multioperation
h(z1,x2) such that on the binary sets (01) and (10) it takes one of the
following four values: (00), (01), (0%), (0—).

Let
x, if 1 = z9;
t(x1,29) =< .’
(@1,2) {h(.%’l,.%'g), otherwise.

Superposition t(x1, g1 (x1)) defines unary multioperation p(z) = (043), where
B € {0,%,1,—}. In the first two cases the validity of the statement follows
from Lemma 6. Consider p;(z) = (01) and p2(x) = (0—).

Using the equality predicate branching operator from multioperations
p1(z2) and ( * x ) we obtain (x10%). Superposition (x10x)(p1(z1), g1(z1))
defines multioperation (10). Hence, the set [g1, 92, [y, [Ks, [K [E;] 1S com-
plete by Lemma 3.

Similarly, from py and * we get multioperation (¥ — 0 x). Superposition
(* — 0 %)(z1,p2(z1)) defines multioperation (x0). Then we obtain (x 0 *
0)(p2(x2), g1(z2)) = (00). Finally, we have Lemma 6. O

Lemma 8. Ifgl(w) = (__)792('%') = (*_)7 then [917927fK27fK57fK67fK7]
1s complete in Ms.

Proof. Using the ideas and techniques from Lemma 7, we can obtain mul-
tioperation (0—). O

Theorem 3. A set of multioperations R is ESy-complete if and only if it
18 not contained entirely in any of the classes K1 — Kq1.
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Proof. One of 8 unary multioperations can be obtained by identifying vari-
ables in fr,,:

fll(u = (__)’ f}2(11 = (00)’ f?(u = (11)’ f;l(u = (10)’
fion =0=),  fo, =1, fly,=(=0),  fr, =(1-).

Since fl7(u(fl7(11(x)) = (——) and f%ll(f;'(u(x)) = (——), then it is enough
to consider the first six operations.

Case 1. Consider f}(n = (——). By identifying variables in fx,, we can
obtain one of the following unary multioperations: (10), (11), (1x), (1—),
(*0)7 (*1)’ (**)’ (*_)

It is clearly that it is enough to consider only six pairs of multioperations:

{(10), (==)} {11, (==)} {(1=),(==)}
{(00), (==)} {(+%), (=)} {(x=), (=)}

However, we have Lemmas 3-8 for all these pairs.

Let us remark that (x1)(——)(z) = (11) and (x0)(——)(x) = (00).

Case 2. Consider f = (00). Superposition fx, and f% defines
multioperation (11) or (——).

It follows from Lemma 2 that the set {(00), (11)} is complete in Ms. For
the set of multioperations {(00), (——)} we use Lemma 6.

Case 3. Consider f;’(n = (11). Superposition fx, and f;’(n define
multioperation (00) or (——).

For sets {(00),(11)} and {(11),(——)} we use Lemma 2 and Lemma 4
respectively .

Case 4. Consider f;l(u = (10). There are a pair of binary sets (&) and
(&) for the multioperation fx,, such that (fx,,(&)fx,,(@)) € {(00), (11),
(O_)7 (_0)7 (1_)7 (_1)7 (11)}'

Substitute (10) into the multioperation fg,,. We obtain one of the follow-
ing unary multioperations: (00), (11), (0—), (=0), (1—), (=1), (——). Using
ideas from cases 1-3 for these multioperations, we complete the proof.

Case 5. Consider f = (0—). Note that f,(0,...,0) € {1,—}. There-
fore we have fx,(f%, ) € {(11),(1=),(——)}. As above, we use ideas from
cases 1-3.

Case 6. Consider fi, = (—1). We have fg,(1,...,1) € {0,—}. Then
we can obtain fx,(f%,,) € {(00),(—0),(——)} and use cases 1-3.

This completes the proof of the main theorem. O

4. FESp-closed subsets of Ky

In this section, we show that precomplete set Kg consists of 20 E.Sy-
closed subsets.
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Lemma 9. Any ESy-closed class from Mo is generated by the set of all
its multioperations depending on at most two variables.

Proof. This Lemma can be proved by methods of the corresponding state-
ment from [9]. O

According to the previous Lemma, it can be easily checked that Ky
contains the following 16 multioperations only:
Ko = { (55 % %), (+ — =), (+01x), (+10%), (= # 5 =), (= — =),
(—01—),(=10—), (0 % %1), (0 — —1),(0011), (0101),
(1% %0), (1 — —0), (1010), (1100) }
Lemma 10. [(x % *x*),(1 — —0)] = Kp.

Proof. To prove Lemma, we obtain the remaining 14 multioperations using
g1(x,y) = (% x % x) and ga(x,y) = (1 — —0).
We get

(=== ) =g g0(y); 10)=gx); (01)=ggp(,z)).
All other multioperations in Ky are obtained from the following consid-

eration. Let f1 = (ajasasay) and fo = (815283084). If f1, f2 € Kg, then we
can obtain f3 = (a1820304) and fy = (yagagay), where fs, fy € Ky, O

Let P ={f] f(0,...,0) € {«} and P, = {f | f(0,...,0) € {—}}. Tt is
easy to prove that P; and P, are ESy-closed sets.
Now consider the following 20 subsets of Kj.

Sp={(xxwx)}; Sp={(—— ——)}; S5 = {(xxx), (x — =) }1

Sy = {(0011), (0101) }; S5 = {(— **—), (= — ——) };
Se = { (% % #x), (x01x), (x10%) } ; S7 = {(0 % x1), (0011), (0101) } ;
Ss = {(0——1),(0011), (0101) }; Sg = {(— — —=), (=01—), (=10-) };
S 10 = {(0011), (0101), (1010), (1100) } ;

Sit = {(x % xx), (6 = =), (= xx=), (= — =) };

2 {(* * **)’ ( _*)’ (*01*)’ (*10*)};

S13 = {(0 1), (0 — —1),(0011), (0101) };

S1a = {(=* =), (= = =), (=01-), (=10-) };

Si5 = {(x* **), (x01x), (x10%), (0 * 1), (0011), (0101) } ;

S16 = {(= = —=), (=01-), (=10-), (0 — 1), (0011) (0101) };

Si7 = {(x* **), (% — —x), (*01x), (+10%), (0 * x1), (0 — —1), (0011), (0101) } ;
518 - { — ok x— )7 (_ - __)’ (_01_)’ (_10_)’ (0 * *1)7 (0 - _1)7

(
(0011), (0101) };
S1g = { (% * %), (+01x), (x10%), (0 * x1), (0011), (0101), (1 * x0),
(1010), (1100) };
S20 = {(= = —=),(=01-), (~10-), (0 — —1), (0011), (0101),
(1 ——0),(1010), (1100) } ;
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Theorem 4. The sets S1 — Sag are ESy-closed.

Proof. 1t is evident that Sy, So, S3, S4, and S5 are ESy-closed. Matveev
in [11] proved the ESy-closure of Sg, S7, S1o, S15, and S19. We define the
remaining sets as intersections of known ESy-closed classes.

Ss =K1 NK3N KgN Ky; Sg =P, N KgN Ky;
S11 = K7 N Ko; S12 = P1 N Ky;
S13 = K1 N K3 N Ko; S14 = PN Koy;
S16 = K1 N Kg N Ko; S17 = K3 N Ko;
S1s = K1 N Ky; Soo = Kg N Ky.
It proves that all S1 — Sog are ESy-closed. ]

Remark 1. Closed sets from [11] can be represented as follows.

Se=PiNK3NKsN Ko; S7=KiNK3NKsN Ky;
S10 = K5 N Kg N Kg; S15 = K3N K5 N Kg;
S19 = K5 N Ky.

Lemma 11. Let Q be an any ESy-closed subset of Ky. Let g(x) be an
unary multioperation obtained by identifying variables of some

flz1,...,2n) € Q.
Then g(z) can be one of the following three multioperations:
g(x) = (01), g(z) = (xx), g(z) = (=)

Proof. Consider f(x1,...,2,) € Q. Since @) C Ky, it follows that f €
Pol Rg. Therefore,

f(z,...,x) € {(xx),(==),(01),(10)}.
However (01)(z) = (10)(10)(x). O
Corollary 1. There are three minimal subsets of Ko only.

In the following lemmas, we will keep in mind that the sets under
consideration are precomplete only in given sets.

Lemma 12. Sy; is an ESy-precomplete set in Q iff [Q] = Ky.

Proof. Since (* % %) € S11, we need to obtain the multioperation (1 — —0).
We consider various cases for fg,,.
Let fs,, = (layag0), where oy, a9 € {%,0,1, —}. Hence,

. fSn(x,y)v if z =y;
(1--0)= {(— — ——)(x,y), otherwise.
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For the set of multioperations {(x * *x), (1 — —0)} we use Lemma 10.
Let fs,, = (0apagl), where aq, a0 € {*,0,1, —}. Now we obtain

(x01) = {(* s 58)(2,y), if T = y;

fsy,(z,x), otherwise;

and
(151520) = (*01*)((_ - __)(x7y)7f511 (.%',.%'))7
where (1, B2 € {*,0,1,—}. Then we use the previous case.
Let fs,, = (a10lay), where ay, g € {*,—}. We obtain

fsy, (z,y), otherwise;

and
(1 20) = (+01)((— # +-)(z,9), ).
Then we use the previous case.
Finally, let fs,, = (a110a2), where aq, e € {*, —}. We can obtain

(101lag) = fsy, (y,x)
This completes the proof. ]

Lemma 13. Si7 is an ESy-precomplete set in Q iff [Q] = Ky.
Proof. Since (x x xx) € S17, we need to obtain the multioperation (1 — —0).
Let fs,. = (layag0), where aq, g € {*,0,1,—}. Then

(1--0)= {fsn(w,y), if ¢ = y;

(x* — —x)(z,y), otherwise.

Now we get ESy-complete set in Kjy.
Let fs,, = (—ajas—), where oy, € {%,0,1,—}. Using the operator
with the equality predicate branching, we get (— * *—) and then

(1% %0) = (x01%) ((— * *—)(z,y), z).

Finally, we use ideas from Lemma 12. O

Lemma 14. Si5 is an ESy-precomplete set in Q iff [Q] = K.

Proof. Let fs,, = (xaiaex), where a, s € {*,0, 1, —}. The multioperation
(%) can be obtained by identifying variables in fg,,. Using the operator
with the equality predicate branching, we obtain (¥01x) and then we use
ideas from the final part of Lemma 12.

Let fs,s = (lagag0), where aq, g € {*,0,1, —}. Then we obtain

(*/81/82*) = (0 * ok 1)($, fsl8(x’y))

and use the previous case. ]
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Lemma 15. Sig is an ESy-precomplete set in @Q iff [Q] = Ky.

Proof. The multioperation (——) can be obtained by identifying variables
in fg,,. Using (1% *0), we get

o (1xx0), if x = y;
(1 0) {(——)(m), otherwise. -

Lemma 16. Sy is an ESy-precomplete set in Q iff [Q] = K.
Proof. The proof is trivial. O
Lemma 17. Sy is an ESy-precomplete set in Q iff [Q] = Si7.

Proof. Note that Si2 contains four multioperations from Si7. Let fg,, =
(0cyael), where ag, g € {*,0,1,—}. Using the operator with the equality
predicate branching, we can get the remaining four multioperations.

If fs,, = (—ajae—), then using E-operator, we obtain the whole set of
S11 and some other operations. By Lemma 12, we get Kg.

If fs,, = (lajag0), then using E-operator, we obtain the whole set of

S19 and some other operations. So, by Lemma 15, we get Kgy. O
Lemma 18. Si5 is an ESy-precomplete set in Q iff [Q] = Siz or
(@] = Sio.

Proof. Consider cases for fg,.

Case 1. Let fs,, ¢ K3 and fg,, ¢ K5. If fg,, = (1——0), then we have a
complete set for Kg. If fg,, = (—ajas—), where aj,ay € {*,0,1,—}, then
using F-operator, we obtain the whole set of S1;. Therefore we get Kj.

Case 2. Let fs,, € K3 and fg,, ¢ K5. If f5,, = (0——1), then we obtain
(* — —x). It gives us Si7. Similarly, for fg,, = (x — — %) we obtain S;7.

Case 3. Let fs,. ¢ Ks and fs,, € Ks. Let fs,, = (laga20), where
aq,ay € {*,0,1}. Using E-operator, we obtain the whole set of Sig. O

Lemma 19. Si3 is an ESy-precomplete set in Q iff [Q] = Siz or
(@] = Sis.

Proof. Case 1. Let fs,, ¢ K1 and fg,, ¢ K3. Let fg,, = (laja20), where
aq,ay € {*,0,1,—}, then we obtain

(*ﬁ1ﬁ2*) = (0 * *1)(x’ fSIS (x’ y))

and

o fSIS('I7 )’ if v = Ys
(1--0)= {(0 — —1)(x,y), otherwise;

Therefore we get Ky.
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Case 2. Let fs,, € K1 and fg,, ¢ K3. Let fg,, = (—aiae—), where
ay,ay € {*,0,1,—}. Using FE-operator, we can get the remaining four
multioperations for S77.

Case 3. Let fs,, ¢ K; and fs,, € Ks. Let fg,, = (xajag%), where
ay,ay € {*,0,1,—}. Using FE-operator, we can get the remaining four
multioperations for Sig. ]

Lemma 20. Sy4 is an ESy-precomplete set in Q iff [Q] = Sis.

Proof. Case 1. Let fg,, ¢ P» and fg,, € K;. Let fs,, = (Oajasl), where
ap, a0 € {%,0,1,—}. Using E-operator, we can get the remaining four
multioperations for Sig.

Case 2. Let fs,, ¢ Ki. If fs,, = (*aja9x), then using E-operator we
obtain the whole set of S1;. Adding (—01—) to Si1, we get K.

If fg,, = (lagag0), where a, an € {%,0,1, —}, then we obtain

(*5152*) = (_ * *_)(x7 f514(x7y))

and

1--0= {{i14—(x—,yz’) (li,ﬂ;):, z‘;cherwise.
Therefore we get Ky. O
[Lejmma 21. Si6 is an ESy-precomplete set in Q iff [Q] = Sig or
Q] = S20.

Proof. Consider the various cases for fg,,.
Case 1. Let fg,, ¢ K1 and fs,, ¢ K¢. If fg,, = (1%%0), then we obtain

(* * *x *) = f516 (xa f515($,y))

and
(1__0): f5’16(w7y)7 lfw:ya .
(0 — =1)(x,y), otherwise.
Therefore we get K.
If fg,, = (xayagx), where o, a9 € {*,0,1}. The multioperation ()
can be obtained by identifying variables in fg,,. Using (0101), we get

(x10%) = fsie(x,y), if z=y; |
(0101)(x,y), otherwise;

and
(1= =0) = (+10%)((0 = = D)(z,y), (= — = =)(z,9))-

Now we get Ky.
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Case 2. Let fg,, € Ky and fs,, ¢ Kg. Let fg,, = (0%x*1), then we obtain
(— *x—). It gives us Sis.

Case 3. Let fs,, ¢ K; and fs,, € Kg. Let fs,, = (lagaz0), where
aq,as € {0,1,—}. Using E-operator, we can get the remaining three mul-
tioperations for Sag. U

Proposition 1. [(1 % x0)] = Si.
Proposition 2. [(1 — —0)] = Sy.
Propositions 1 and 2 were proved in [11] and [14] respectively.

Lemma 22. Sy is an ESy-precomplete set in Q iff [Q] = Sig or
[Q] = S2-

Proof. Consider the various cases for fg,,.
Case 1. Let fg,, ¢ K5 and fs,, ¢ Ke. If fs,, = (—**—), then we obtain

(xxx %) = fs,, (w, (1100)(z, y))

Moreover,

(—10-) = § fsw(@y), Tz =y;
(1100)(z,y), otherwise;

and
(1——=0) = (=10—)(=, (1010)(z,y)).

It follows that we get Kj.
If fs,, = (* — — ). The multioperation (**) can be obtained by identi-
fying variables in fg,,. Using (1010), we get

(1-

0) = (1010)(z,y), if x = y;
| fsyo(z,y), otherwise.
Now we get Ky.
Case 2. Let fs,, € K5 and fg,, ¢ K. If fs,, = (xajag%), where
ag, a9 € {*,0,1}. The multioperation (xx) can be obtained by identifying
variables in fg,,. Moreover,

(I1x%0) = {(1010)(967y), if = y;

(%) (z), otherwise.

Thus we have ESy-complete set for Sig (see Proposition 1).

Trivially, if fg,, = (0% 1) or fg,, = (1 % *0) we get Sig.

Case 3. Let fs,, ¢ K5 and fs,, € Kg. This case is similar to the previous
one. Using Proposition 2, we get Sop. U
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Lemma 23. The following statements are true.
1) Sy is an ESy-precomplete set in Q iff [Q] = Ss or [Q] = Se;
2) Sy is an ESy-precomplete set in Q iff [Q] = S5 or [Q] = So;
3) Ss is an ESy-precomplete set in Q iff [Q] = S11 or [Q] = S12;

4) Sy is an ESy-precomplete set in Q iff [Q] = Sz, or [Q] = Sg, or
Q] = S1o;

5) S5 is an ESy-precomplete set in Q iff [Q] = S11 or [Q] = S14;
6) Se is an ESy-precomplete set in Q iff [Q] = S12 or [Q] = Sis;
7) S7 is an ESy-precomplete set in Q iff [Q] = Si3 or [Q] = Sis;
8) Ss is an ESy-precomplete set in Q iff [Q] = S13 or [Q] = Sis;
9) Sy is an ESy-precomplete set in Q iff [Q] = S14 or [Q] = S16-
The proof is omitted. It uses the ideas and techniques from previous
Lemmas.

Theorem 5. The ESy-precomplete set Kg consists of 20 ESy-closed
subsets.

In conclusion, we present the structure of Ky in diagram 1.

Figure 1. ESy-closed subsets of Kg
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5. Conclusion

In this paper, we considered precomplete ESy-closed classes of multi-

operations defined on a 2-element set. The next steps are to obtain all
ESp-closed classes of Ms and to determine properties of multioperations
defined on a 3-element set.
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Kpurepuii noJIHOTHI /IJIsi olepaTopa 3aMbIKaHUS C Pa3BETB-
JIEHHEM II0 MPe/IUKATy PaBEHCTBA HA MHOXKECTBE MYJIbTUOIIE-
paiuii padra 2

B. U. ITauresnees, JI. B. Pabter

Awnnoramusi.  MysibTroneparuy mpeicTaBIsIIOT 0TOOparXKeHusl, 3a/laBaeMble Ha KO-
HEYHOM MHOKECTBE M BO3BpalllaloIe B KadeCTBe CBOUX 3HAYEHUH BCE ITOJMHOXKECTBa
paccmarpuBaeMoro MHoxkecTBa. Oreparop CyNmeprio3uIuN MPUBOJUT K KOHTUHYYMY 3a-
MKHYTBIX MHOXKeCTB. [losTOMYy BO3HHKaeT HEOOGXOAMMOCTH PACCMOTPEHHUsI OIEPATOPOB
3aMBIKAHUs, KOTOPBbIE HAPSIY C CYIEepPHO3UInell ComepKar Apyrue omeparuu. B pabo-
Te pacCMaTpPUBAETCs 3aMbIKaHHE MYJIbTHOIIEPAIHii, I0JyYeHHOe TPUMEHEHNEM OIlEPaTO-
pa CyHepIio3WINy, OCHOBAHHOW HA OOBEIWHEHWM, OII€PATOPa PA3BETBJIEHUS IO IMIPEIH-
Kary paBeHcTBa. [ljis1 MyJjbTHOIEpalnii, 3a/1aBaeMbIX Ha, JBYX3JIEMEHTHOM MHOXKECTBE,
YKa3aHbI BCE MPEIOJHBIE MHOXKECTBA, COOPMYJIMPOBAH U JIOKA3aH KPUTEPUIl TMOJHOTHI.
IIpuBenena auarpaMma BKJIIOYEHUH 3aMKHYTBIX KJIACCOB JIJISI OJHOI'O U3 ITPEJIITOJTHBIX
KJIaCCOB.

KurouyeBble cjioBa: 3aMbIKaHUe, IIPEUKAT PABEHCTBA, MYJIbTUONEPAIUS, 3aMKHYTOE
MHOZK€CTBO, CyIePIIO3UINs, KPUTEPHil ITOTHOTHI.
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