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Abstract. We consider linear systems of ordinary differential equations (ODE) with rect-
angular matrices of coefficients, including the case when the matrix before the derivative
of the desired vector function is not full rank for all argument values from the domain.
Systems of this type are usually called differential-algebraic equations (DAEs). We ob-
tained criteria for the existence of nonsingular transformations splitting the system into
subsystems, whose solution can be written down analytically using generalized inverse
matrices. The resulting solution formula is called a generalized split form of a DAE
and can be viewed as a certain analogue of the Weierstrass-Kronecker canonical form.
In particular, it is shown that arbitrary DAEs with rectangular coefficient matrices are
locally reducible to a generalized split form. The structure of these forms (if it is defined
on the integration segment) completely determines the structure of general solutions to
the systems. DAEs are commonly characterizes by an integer number called index, as
well as by the solution space dimension. The dimension of the solution space determines
arbitrariness of the the general solution manifold. The index determines how many times
we should differentiate the entries on which the solution to the problem depends. We
show the ways of calculating these main characteristics.
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1. Problem statement

Since the beginning of 1970s, analysis of complex electrical and hydraulic
networks, as well as electronic circuits, often employed systems that include
interconnected ordinary differential equations (ODEs) of various orders and
algebraic equations. Such systems can be written as vector equations with
a singular matrix multiplying the leading term (cf. [2]- [15]). Consider a
first order system

Mz :=At)c+Bt)xr=f, t€T = o, [, (1.1)

where A(t), B(t) are (mxn)-matrices, z = xz(t), f = f(t) is the desired and
the given vector functions, correspondingly, & := dxz(t)/dt. It is assumed
that all entries are smooth enough, and

rank A(t) < min{m,n} Vt € T. (1.2)

System (1.1) is said to be closed, if the number of equations is equal to the
number of components in the desired vector function (m = n); if m > n,
the system is called overedetermined; otherwise, if m < n, we say that the
system is underdetermined. For a closed system, condition (1.2) is similar
to the equality det A(t) =0, ¢t € T. In what follows, systems of type (1.1)
with constant coefficients are called stationary systems (SS).

By the solution to (1.1) on T we understand a vector function xz(t) €
CY(T) that turns (1.1) into identity on T.

If (1.1) satisfies (1.2), then (1.1) is commonly referred to as a differential
algebraic equation (DAE) [4] or an algebraic differential system [3]. Some-
times such systems are called singular systems [2], or descriptor systems [1],
[10]. The research in this area has been carried out for 40 years (see [11] and
the references listed therein). However, some issues for non-closed DAEs
remain relevant and are addressed below.

Remark 1. For simplicity, the dependence on ¢ sometimes can be omitted,
if this does not cause confusion. Inclusions V(t) € C{T), i > 1, V(t) €
C(T), where V() is a matrix or a vector function, mean that all derivatives
of all elements of V (¢) are continuous up to order i, or simply continuous.

Definition 1. The solution space of the homogeneous system (1.1) is
finite-dimensional on T, if there exists an (n x d)-matriz X4(t) € CYT)
with the smallest possible d, such that any linear combination x(t,c) =
X4(t)c, where vector c takes all values from R?, satisfies Ayx(t,c) =0, and
there are no other solutions to Az = 0 on T different to x(t,c). The kernel
of the operator Ay is finite-dimensional (dim ker A; < 00), if the solution
space of (1.1) is finite-dimensional: d < co. The number d will be called
the solution space, or the kernel dimension.
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The linear spaces ker A; = {u € CYT) : Aju = 0}, im Aju = {¢ €
C(T) : Aqu = ¢, for which u € C*(T)}, are called the kernel and the image
of the operator Ay, correspondingly.

Definition 2. The closed system (1.1) has a Cauchy type solution on T,
if it is solvable for any vector function f(t) € CF™"(T) and its solutions can
be written down as a linear combination

2t €) = Xylt)e + (b), (13)

where X4(t) is an (nxd)-matriz from CF(T) with the property rank Xy(t) =
d vVt € T, c is a vector of arbitrary constants, ¥ (t) is a vector function
with the property A (t) = f(t), t € T. Additionally, any subsegment
[, Bo] €T does not contain solutions different to x(t,c).

Remark 2. If (1.1) is closed, A(t), B(t), f € C(T), det A(t) # 0Vt €
T, then its general solution is expressed by the Cauchy formula z(t,c) =
Xn(t)e + (t), ¥(t) = foi K(t,s)f(s)ds, t € T , [7] where X,(t) is the
Cauchy matrix of the system

i =AY t)Bt)z, K(t,s) = Xn(t) X (s) A7 (s).

n

DEAs with the Cauchy type solutions inherit very important properties
of linear systems in the Cauchy form: 1) the solution sets on 7' and on
To C T coincide (there is no "memory”); 2) if a solution to a DAE passes
through the point (b € R"™, ¢ € T'), then this solution is unique on 7.
For an equation with aftereffect, for example for the Fredholm equation
z(t) = ffﬂ:(s)ds +1, t € T, the solution is z(t) = 1/(1 —7), 7= — «
and it changes (or may not exist) on 7o C 7.

Definition 3. If there exist operators

l r

Q=Y Lit)d/d), Q =) R;(t)(d/d),

j=0 7=0

where L;(t) are (mxm)-matrices and R;(t) are (nxn)-matrices from C(T")
with the properties

Qo Ay = A(t)y + B(t)y, ApoQy = A(t)y+ B(t)y,

where y = y(t) is an arbitrary vector function from C**Y(T), v = {l orr},
A(t), B(t),A(t), B(t) are some (m x n)-matrices from C(T), rank A(t) =
rank A(t) = min{m,n} Vt € T, then such operators are called the left and
the right regularizing operators (LRO and RRO) for the DAE (1.1), and
the smallest possible I and r are said to be the right index and the left inder,
correspondingly.
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Below, we will need the formula that follows from the Leibniz rule for
product differentiation

di[MF] = M;[M]d;[FT], (1.4)

where M = M (t), F = F(t) are some matrices of suitable dimension from
CU(T), &;[M] = (M (d/dt)M" - (d/dt)iMT)T, T denotes transposi-
tion, M;[M] = “ij“pzﬂ,j:@vM =0, if j > p, and M,; = C’fM(p)7 if
ji<np, C’g = p!/j!(p — 7)! are binomial coefficients.

Definition 4. System (1.1) together with its derivatives of order up to i

di[AMz — f] =0, t € T, where d;[.] is defined by (1.4), is said to be the
i-extended system (1.1).

Using (1.4), write down the i-extended system as

DA, BOMsnle] = (MAB] 0) + (0 MAAD) dinld = alf (0],

1.5
where the matrix D;[A(t), B(t)] is of dimension [(i + 1)m x (i + 2)n], the
zero matrices O are of dimension [(i + 1)m x n]. In what follows, we will
use the splitting

Di[A(t), B(t)] = (By(t) Ti[A(t), B(t)]) , (1.6)

where I';[A(t), B(t)] is a block triangular matrix with the blocks A(t) on
the diagonal, B;(t) = d;[B(t)].

Definition 5. If there exists the operator €, for which the LRO is defined
and Qo Ay = A(t)y+ B(t)y Yy = y(t) € CHY(T), where A(t) #0, t € T,
then the isolated points t, € T: rank A(t,) < min{m,n} are called the
singular points of (1.1).

Example 1. Consider the following three systems

0 () o)== (5 300 (6 3) v

where & = (z1 22)", ¥y = (y1 y2)T, 2 = (21 22) ", f = (f1 o), s(t) =
sin?(w(t)), c(t) = cos?(w(t)), w(t) is a given smooth function on 7. Here,
in Examples 1) and 3), roots of the functions cos(2w(t)), c(t), s(t) are
singular points in terms of Definition 5:

0, = diag{1, (d/dt)} G ‘f) det A(t) = <_Sl(t) _Cl(t)> — cos(2w(t)),
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Q) = diag({1, (d/dt)} (_11 i’)  det A(t) = <_%(’5) ‘C?S)> — s(t)e(b).

Even though the points where the rank of A(t) changes may be located
anywhere on T, there exists y = f — A(t)f Vf € C*(T). We can assume
Qg = (d/dt)[Ey — A(t)(d/dt)] as the LRO.

Now perform a more detailed analysis by summing the first and the
second DAE. We obtain

cos(2w(t))iy +x1 = fi, xa+x1=fo, 0-91 +v1 = f1, y2— v1 = fo,

5 —s(t)21 +s(t)22 + 21 = f1, c(t)z2 = fo, o
where fl = fl + (C(t) C(t))f7 f2 = f2 + f17 fl = fl - (_S(t) S(t))f7 f2 =
f2 — f1. Components of solutions can behave differently for different w(t).
In particular roots of the equation c(t) = 0 may exist on T', whereas roots

of s(t) = 0 and cos(2w(t)) = 0 may not.

Remark 3. For systems (1.1) with the properties
det A(t) A0Vt #(, t,( €T, det A(() =0,

the point ( is always singular, the classic existence and uniqueness theorem
is violated there. Earlier, more powerful methods for studying properties
of solutions in the neighborhood of ¢ were developed (see [7], [12]- [14]
and the references listed therein). Generally, we cannot predict if a DAE
has singular points by evaluating the behavior of the rank of matrices
A(t), (A(t)|B(t)). Before applying any of the methods from the papers
metioned above, the following two problems should be solved : 1) find
singular points; 2) categorize them as it was shown in Example 1, where
the DAE under study was split into subsystems (algebraic and ordinary
differential). Such splitting cannot always be done, even in theory (below
we give a example).

Below, we will need information on properties of variable matrices and
algebraic equations that correspond to them.

Definition 6. (see, for example, [2]). The (n x m)-matriz M~ (t) is said
to be a semi-inverse of the (m x n)-matriz M(t), t € T, if for anyt € T
M@E)M~—(t)M(t) = M(t).

A semi-inverse is defined for any ¢ € T and for any (m X n)-matrix
M (t). The theory of generalized inverse matrices can be found in a number
of monographs (see, for example, [2]). If M(t) is square and non-singular,
then M~1(t) = M~ (t). According to [15], there exists the matrix M~ (t) €
CYT), it M € CYT) and rank M (t) = r = constVt € T. If rank M (t) #
const,t € T, then at least one element of the matrix M~ (¢) has a second
type discontinuity in the point ¢ € T where the rank changes.
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The system of algebraic equations M (t)x = ¢(t), t € T, is solvable if
and only if

()e(t) = 0, TI(¢) = [Em - M(t)M‘(t)]t e, (1.7)

and its solution can be written as

w = M7 (06() + (eu(t), () = [E— M- OM©)],  (18)

where the expressions II(¢), TI(t) are projectors, u(t) is an arbitrary vector
function. The system has (cf. [2, ¢.34]) constant solutions

r=G 0+ [E,—G Jc, (1.9)

B B
where G = [ M " (s)M(s)ds, 6 = [ M (s)$(s)ds, c is an arbitrary vector

from R”, ifaand only if
o(t) = M(t)G 0. (1.10)

2. Structure of general solutions and index of linear DAESs

It is known [7, p.335] that for any pencil of constant m x n matrices
AA + B there exist constant matrices P, @) of suitable dimension such that:
det Pdet Q # 0,

PMA+B)Q={ Eg+J, AN+ E,, AL+M, XL*+M*, 0}, (2.1)
where J is some (d x d)-block, E, is an identity matrix of dimension x,

AN+ E, = {)\Nkl + By, ,)\Nkp —|—Ekp},
AL + M = {ALy, + My, -+, ALy, + My, },

)‘L*+M*:{)‘thl+ ;1"" a)‘thv_FM:v}’
(0 By o o _(Byod\ g [0 -
Nk;j - (O 6 > y ] = 1,p, qu — 6 ) Myj - El/jfl y )] = 1ava
Ly, = (Em‘—l 0)’ My, = (0 E’?J—l)’ i=14q.

In the blocks L, M the zero sub-blocks are either columns or rows. The
representation (2.1) is called a canonical structure of the pencil and was
first introduced in the papers by Weierstrass and Kronecker. Based on
(2.1), [7] gives necessary and sufficient solvability conditions for station-
ary systems. Moreover, the form of (2.1) contains full information about
properties of stationary systems. Transformation of the DAE (1.1) to
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the Weierstrass-Kronecker canonical form faces a serious difficulty: gen-
erally, the canonical structure of the pencil AA(t) + B(t), t € T may
not coincide with the canonical structure of the pencil for the system
At)d[Q(t)y]/dt + B(t)Q(t)y = f(t), t € T, where Q(t) is a non-singular
matrix from C!(T) (some examples can be found in [15]).

In 1982, S.L. Campbell S.L. and L.R. Petzold (see, for example, [4] and
the references listed therein) introduced a notion of the central canonical
form (CCF) for closed DAEs: it is assumed that there exist smooth matrices
P(t), Q(t), det P(t)Q(t) # 0 ¥t € T with the property

Pt)A)dQ)yl/dt + P(t)B(H)Q(t)y = (2.2)

= diag{Eq, N(1)}y + diag{J (), En—a}y = P(1)f(?),
where J(t), N(t) are some square blocks, N(¢) has an upper-triangular

form with a zero diagonal for any t € T'. Using (2.2), we can write down
a general solution for the closed DAE (1.1). A specific structural form
was introduced for non-closed DAEs in [9]. In particular, it is different
to the canonical structure for stationary systems. In the case of variable
smooth matrices, it is generally impossible to split system (1.1) with the
same detalization as it can be done for SS. Moreover, we cannot always
guarantee the reduction to the CCF.

Example 2. Consider the index 2 DAE from [4]:

Mz =A{)i+x = <U?t) “’(()t)) i+ (é ?) z=¢, teT,

where v(t), w(t) € C®(T), v(t)w(t) = 0 Vt € T. This DAE cannot
be reduced to the CCF on the whole T, because it is impossible to find
even a continuous matrix with the properties det P(t) # 0, P(t)A(t) =

(Alo(t)> VteT.

Assume that 1) all entries of (1.1) are continuous on T’; 2) there exist
non-singular for any ¢ € T matrices P(t) € C(T), Q(t) € C'(T), such that

P()AB)Q() + P([BHQ) + A)Q(1)]z =
Ly Lia(t) Lis(t) Lia(t) Las(t)
0 ng(t) ng(t) L24(t) ng(t)
= 0 0 ng(t) L34(t) L35(t) 2+
0 0 0 L44(t) L45(t)
0 0 0 0 Opmyxng

) )
) )
) M35(t) z = Pf, teT, (23)
) )
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where © = Q(t)z, L;j(t), M;;(t) are some blocks whose dimension is de-
fined by the blocks located on the diagonal, ¢ = 1,4, j > ¢. Here blocks
Lll(t), Mn(t) are (d X d)—matrices, det Lll(t) 75 0Vt € T, L22(t), M22(t)
are (dy x di)-matrices, and the solution to the system

Loa(t)w + Mo (t)(t)w = g(t), t € T,
is unique and has the form

w=Ri1g = 3" Ci(0)(d/dtyg(t) Vg(t) € C'(D) (2.4)

where C;(t) are (dy x dj)-matrices from C!(T'). The subsystem of (2.2), in
particular, has such a solution :
Ntw+w=g, teT,

wt)=g+Tg+-+T g, T=—N(t)(d/dt). (2.5)

If the solution to a DAE has the form (2.4), then it can be found by the
formula

-1

w(t) = (Bq, 0 ... 0) D 4[Las(t), Mao(B)dia[f(£)] = C;(t)g"(2),
i=0

where we used notations from (1.5). For a pair of matrices L33(t), Mss(t),
Ly4(t), Myy(t) of dimensions (mq xnq) and (msg X ng), correspondingly, the
following inequalities are valid: mq < nq1, mo > ng,

rank Ls3(t) = min{my,n;}, rank Ly (t) = min{me,no} Vt € T. (2.6)
Here d+dy + mi + mo+mg=m, d+dy + ni +ne +ng = n.

Definition 7. The first part of (2.3) is said to be the generalized split form
(GSF) of the DAFE (1.1), whereas the number 1 in (2.4) is called index.

Introduce the following splittings

T
2= (2] 2 23 z{ z) ,

5 ) =@ PP PR f=Pf, (27

and study the structure of solutions to subsystems of system (2.3). For the
components from (2.7), we have:

Lii(t)i1 + Myi(t)z1 = f1, Laa(t)zs + Mas(t)ze = fa, (2.8)
Las(t)23 + Mg (t)z3 = f3, Laa(t)2a + Mus(t)24 = fu, (2.9)
0m3 Xn325 + 0m3 xnz<5 — f57 (210)
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- 5—1
where f; = f;— E Li,ﬁfj(t)ziﬁfj +Mi,6fj(t)267j , 1 =14,3,2,1. Then, from
j=1
(2.10)- (2.8) we find zs, 24, 23, 22, 2z1. Under the assumption that f5(¢) =
0, t €T, in (2.3) we have
z5(t) = wa(t), (2.11)

where ws(t) is an arbitrary vector function of dimension n3.
The matrix Lg4(t), where mg > ng, is full rank for any ¢t € T. Using
(1.7) and (1.8), write down a system of ODEs

4 = —L () Mua(t)zs + Ly (t) fa,

with the projector Ly (t) = {Enz - LZ4(t)L44(t)} = 0 and the consistency

condition
Maa(t) | Mas ()24 + o] =0, Ta(t) = [ By = L)L (®)],  (212)

It follows that
t
walt) = Zolt)es + alt / Zo(6) 25 Ns) Liy(s) fals)ds,  (2.13)

where Z5(t) is the Cauchy matrix of the system 0 = —L;,; Myv, c2 is an
arbitrary constant vector from R™. Due to the consistency condition (2.12)
and by formula (1.9), we have

— G0+ [E,— G Gl (2.14)
Tn (1.9) we assume
M(t) = Taq(t) Maa () Zo(t), §(t) = —fa(t) — Taa(t) Mas(t)ih(t), c € R™.
According to [2], the relation (2.14) is valid if and only if
() = M(£)G6. (2.15)

Further, the matrix Ls3(t), where m; < ng, is full rank for any t € T.
According to (1.7) and (1.8)

= —Li3(t) Msa(t) s + Lz (t).f + Tsa (8w (B),

Ms3(t) = {Em - L:)Ts(t)L33(t)]7
where the condition (2.12) is absent, since II33(¢) = 0; wy (¢) is an arbitrary
vector function of dimension nq. Then,

23(t) t)er +/Z1 L33( ) f3(s) —i—f[gg(s)wl(s)}ds, (2.16)
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where Z;(t) is the Cauchy matrix of the system © = —L33M33v, ¢ is an
arbitrary constant vector from R"™.

Subsystems with matrices Loa(t), L11(t) have general solutions of the
form

-1 ¢
alt) = 3 GO/ o (1) = 20+ [ 20276 i(s)ds, (217
j=0 o

where Z(t) is the Cauchy matrix of the system v = —Lﬁanv, ¢ is an
arbitrary constant vector from R<.

Lemma 1. If the DAFE (1.1) can be reduced to its GSF, then 1) the DAE
has LRO and RRO, and the left and the right indices are equal; 2) f €
ker Ay if and only if the condition (2.15) holds and in (2.7) we have f5(t) =
0, teT.

Proof. Now prove the fist point of the theorem. Here we can define the
LRO and the RRO as

Q= {Eq,(d/dt)Eg, o N1, Emy, By, Ems JP(1),

QT‘ - Q(t){Ed, Al*l o (d/dt)Edl ; En17En27 En3}7 r= l7

where P(t), Q(t) are matrices reducing the DAE to the GSF, A;_; is an
opertator from (2.4).

The second point of the theorem follows from the form of the GSF and
the consistency condition (2.12), which is equivalent to (2.15) . O

Now formulate the key statement of this section.
Theorem 1. Let the DAE (1.1) be reduced to the GSF and
f € ker Ay ﬂ Ci(T)

where [ > 1. Then, there exist smooth in their domains matrices X, (t),
Y(t),Ki(t,s), Cj(t), j = 0,l—1, C(t), Ka(t,s), such that any linear
combination

z(t,c) = X,(t)e+Y ()G 0+ o(t) +v(t), t €T, (2.18)
is a solution to (1.1), and T does not contain any other solutions. Here
t

0 = [ K (t.5) f(s)ds + lzo O3 (1) (/) £ ().

- ¢
olt) = COyw(t) + [ K(t, syw(s)ds, t €T,
[e%
¢ is an arbitrary constant vector from R,

v=d+ny+ng,ng =rank [E,, — GG, w(t) = (w] (t) wy (t))"
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is an arbitrary vector-function of dimension ny — ma + ns, rank X, (t) =
vvteT.

Proof. Write down the expressions for general solutions to (2.11), (2.13),
(2.16), (2.17) and, using the formula for the GSF (2.3), we obtain the

. . T
expression for the vector function z = (2 2, 23 z/ z) . Then, we
restore vector functions x = @)z and f and arrive at the desired formula
(2.18). O

3. Existence of the Generalized Split Form

In this section, we discuss conditions under which the DAE (1.1) can be
reduced to its GSF.

Theorem 2. Suppose that (1.1) satisfies the conditions: A(t), B(t) €
C2(T), f € O"(T),

Then, the following assumptions are equivalent:
1) the DAE has a Cauchy type solution and in formula (1.3)

() = [ Kot s)f(s)ds + lz: O3 (1) (ddt £ (1),

where K(t,s), C;(t), 7 =0,l -1 are some (n x n)-matrices;
2) the DAE has the left and the right indices on T equal to l;
3) the DAE has an GSF on T and (2.3) has only two subsystems
Ly (t)21 + My (t)z1 = f1, Loa(t)z2 + Maa(t)ze = fo;
4) starting with some i > 1, the following conditions hold:
rank I';[A(t), B(t)] = const,

E A, BOIA®, B0 = (10 7o) teT.

where T';[A(t), B(t)] is a matriz from (1.6), Z21(t), Zaa(t) are some blocks
of appropriate dimension.

The proof of points 1), 2), 4) of the theorem can be found in [3]. The
first n rows of the matrix I'; [A(t)], split into (n x n)-blocks, can be taken
as the LRO coefficients L;(t), j = 0,1. Point 3) of the theorem was proven
in [6]. If A(t), B(t) € C4(T), then a DAE can be reduced to its CCF and
in formula (2.2) P(t), Q(t) € CA(T).

Lemma 2. Suppose that system (1.1) satisfies the conditions A(t), B(t) €
C™tUT), r = max{rank A(t), t € T}. Then, any subsegment Ty =
[ag, Bo] C T includes a segment Ty = [ow, Bi] C To, where the system
can be reduced to its CCF.
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Proof. Let there be given a matrix M(t), t € T. Introduce a segment
Ty C T. Since the matrix rank is a bounded whole number, there exists a
point tg € Tp: 9 = rank A(tyg) = max{rank A(t), t € Tp}. By continuity,
there exists a segment T} = [y 1] C Tp and a sub-matrix of My1(t), t € Ty,
where det Mj1(t) # 0 Vt € T} and the following relationship holds

E 0 M11 M12 Mll M12
LM = -1 = ,teT
(-MHlel En> (le Moy 0 0 !

Now transform the DAE (1.1). Any subsegment [ag, Sp] C T includes the
subsegment T = [a1, 1], in which an (m x m)-matrix L, € C"1(T})] is
defined, such that det Ly # 0,

P A1 Bl @ fl
L, (A B) =10 B =Lif=1\/fe], teT,
v 0 0/ \" f3

where ranks of the matrices Ay, Bg are full on T7. If By is a (n X n)-
matrix, then x = By ! f,. the process terminates and the lemma is valid. If
r1 = rank Bs(t) < n, then there exists a subsegment T5 C 17, on which the
matrix R; is defined, BoRy = (0 En_,n). R is designed similarly to the
matrix Ly and has the following properties: det Ry # 0,

A A . Bi1 Bia f1
0 0 <y1> + 0 En—rl <y1> = f2 ) te T27
0 0 Y2 0 0 Y2 f3

where = Ry, y = (yir y;)T. If rank A1, t € Ty is full, then the
process terminates and the lemma is valid. Otherwise, following the scheme
described, we continue the process for the subsystem A1191+B11y1+A1292+
Biays = fi.

We arrive at a new system

A A2 Az i Bi11 Bii2 Bis "
0 0 A3 - 0 Ep 4 B2 ;
, + : —f teTs,
0 0 0 gz 0 0 En ;ZQ ! 3
0o 0 0 3 0 0 0 3

where T3 is some subsegment of the segment T5, f is a suitably transformed
vector function f. If rank A; 11, t € T3 is full, then, by introducing the no-
0 A3
0 O

the scheme described, we continue the process and in a finite number of
steps we will build the GSF on a sequence of nested segments. O

tion N = ), we obtain the desired structure. Otherwise, following
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4. Conclusion

In this paper, we proposed a structural form for linear systems of ODEs,

which can be represented as a quasi-upper-triangular form. We called this
form a generalized split form (GSF). Consistently solving the subsystems
of the GSF and using generalized inverse matrices, we can write down the
general solution of the original system of ODEs. It was proven that any
system of ODEs with sufficiently smooth entries can be reduced to its GSF.
For the case of closed systems, we established equivalence of requirements
for the form of the general solution on T" and for existence of the GSF on
T. At present, for the construction of a complete theory, it is necessary to
find out whether the existence conditions of GSFs are equivalent to those
of the general solution (2.18) on T, as it was proven in Theorem 2.
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O06 mHEeKCce U pacHienJIeHHbIX popMax
JauHelHbIX auddepeHnnaabHO-aJredpandyecKux ypaBHeHUId

M. B. Bynaros

Hnemumym dunamuky cucmem u meopuu ynpasiernus um. B.M. Ma-
mpocosa CO PAH, Hpxymcxk, Poccutickas Pedeparyun

B. ®. Yucrakos

Hremumym dunamuru cucmem u meopuu ynpasierus um. B.M. Ma-
mpocosa CO PAH, Upxymck, Poccutickas Dedeparus

Awnnoramusi. Paccmarpusarorcs JIMHERHBIE CHCTEMBI OOBIKHOBEHHBIX (D dEPEHITN-
anpabix ypasaeanit (O1Y) ¢ npaMoyrosbabMu MaTpunamu KodGQUIMEHTOB, BKIIOYAs
cJiydail, Korja MaTpHIa [TepeJl MPOU3BOJHON MCKOMOW BEKTOP-(DYHKIIMKA MMEET HEIOJI-
HBII PAHT I BCEX 3HAYEHUI apryMeHTa m3 obsiactu ompejeseHusi. CUCTEMBbI TAKOTO
BUJA, IIPUHSTO HasblBaTh JuddepeHnuanbHo-anrebpandeckumu ypasaenusmu ([IAY).
Ilosyaensr KpuTepuu CymiecTBOBaHUSA HEOCOOEHHBIX MPEOOPA3OBAHUIM, PACIIEIIISIONIIX
CHCTEeMY Ha TOJCUCTEMBI, JIJI KOTOPBIX C IOMOIIBIO amnmapara OOOOIIEHHBIX OOpPATHBIX
MAaTPUI] MOXKHO BBIIIUCATH ODIIME PEIleHus] B BUJIe KOHEYHBIX dopMys. DTa (opMma Ha-
3BaHa 0000meHHON pacmensiernoit dpopmoit JTAY. Ona sBiseTcss HEKOTOPBIM AHAJIOIOM
KaHOHMYeCcKO# dopmbl Beitepmrpacca — KpoHekepa u coBmajaer ¢ Heil Jijisl IIyYKOB
MAaTPHUI[ C TOCTOSIHHBIMU 3JIEeMEHTaMu. B 4acTHOCTH, MOKa3aHO, 9YTO Tpou3BosibHbIe [TAY
C MPSIMOYTOJIBHBIMU MaTPUIAMU KO3 MDUIIMEHTOB TPUBOIUMBI JIOKAJIBHO K 0DOOIIEHHON
pacmemiennoit popme. Ctpykrypa atnx dhopm (eciam oHa OnpeJiesieHa Ha OTPE3Ke MHTE-
I'DUPOBaHUSsI) HOJHOCTBIO OLPEJENsieT CTPYKTyPy o0mmx peenuii cucreM. Ilpu ananusze
oboznaveHHoro Boime kiacca cucreM OJ[Y BbIsIBJIEHO HaJUYME HEJIOYUCTEHHBIX XapaK-
TEPUCTUK CUCTEM, HA3BIBAEMbIE PA3MEPHOCTb MPOCTPAHCTBA PEIIeHWil W WHJEeKC. Pas-
MEPHOCTH IIPOCTPAHCTBA PELICHUI ONpeesiseT MIPOU3BOJ MHOroo0pa3us oDIIero perie-
Hus. VIHaeKce onpesesseT mopsa0K MPOU3BOAHBIX BXOAHBIX JAHHBIX, OT KOTOPBIX 3aBUCHUT
pelienne 3a1a49u. YKa3aHbl CIIOCOOBI BBIYUC/IEHUST STUX XapAKTEPUCTHK.

KuroueBsle ciioBa: auddepeHnnaabHO-aIredpaniecKkrue ypaBHEeHNs, KAHOHTIECKas
dopma, pacuiemienHast (popMa, IPOCTPAHCTBO PEIIEHMH, HHIIEKC, 0COObIEe TOUYKHU.
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