o) %% Cepust «<MaremaTuka» N3BECTNA

’5 ‘;g‘{% 2019. T. 27. C. 36—54 Uprymcroao
3 |j”|” 2 o E 20CcYy0apPCMBEHHO020
2 [ofanganfw 5

Omraii) yHusepcumema
S HJIAHH-IOCTYT K KyPHAJY:
" v http://mathizv.isu.ru

YK 510.62:004.82
MSC 68T27, 68N19
DOTI https://doi.org/10.26516,/1997-7670.2019.27.36

A Formalization of Document Models
with Semantic Modelling *

A. V. Mantsivoda

Irkutsk State University, Irkutsk, Russian Federation,
Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

D. K. Ponomaryov

Ershov Institute of Informatics Systems, Sobolev Institute of Mathematics, Novosibirsk
State University, Novosibirsk, Russian Federation

Abstract. In this paper, we formalize the general concept of a document model in terms
of the Semantic Modelling (SM) paradigm. We argue that the idea of using documents
as a basic metaphor for modelling appears to be very useful, since it provides a balance
between the logical tools for knowledge processing and cognitive aspects for a much
wider audience than the community of professional mathematicians. A subject domain
can be arbitrarily complex by its nature, but humans tend to choose those primitives,
which are convenient for cognition. The notion of a document is an example of such a
primitive, which has been employed for centuries and clearly remains topical in the era of
information systems. The significant outcome of constructing the semantics of document
models within the SM paradigm is that Semantic Modelling makes document models
executable. Executable models can be directly used as practical information systems,
and this feature makes the programming stage unnecessary. Replacing programming
with modelling has a great impact on the efficiency of IT systems development and
maintenance, and makes these systems friendly for the Artificial Intelligence tools.

Keywords: semantic modelling, document model

1. Introduction
Semantic Modelling is an area of mathematical logic and Artificial In-
telligence, which describes domains by representing them in a logical form.

* The research was supported by the Russian Science Foundation (Grant No. 17-11-
01176)

A FORMALIZATION OF DOCUMENT MODELS 37

Semantic models can be used by knowledge mining systems, robots, au-
tomated reasoners, and machine learning algorithms. Several years ago,
one of the well-known Al inventions — neural networks and Deep Learn-
ing - made a significant breakthrough in information processing. We are
convinced that now it is time for the Semantic Modelling to contribute.

The use of semantic models is able to provide a breakthrough in the
automation of business management. Today, SAP R/3, Oracle ERP, Mi-
crosoft Dynamic Ax, Salesforce, and similar systems reign here. By and
large, they are all coded programs that run business processes.

However programming has an extremely unpleasant flaw, which we call
the lobotomy of meanings. The holistic and beautiful semantics of interact-
ing business processes is cut into pieces and dissolved in numerous program
modules and databases. The semantics, which is dissolved in programs, is
not directly accessible to us, as well as to the Al tools.

Based on our own experience, we are convinced that today business
management is ready for replacing programming by Semantic Modelling.
Properly constructed models can be operational, like information systems,
and this makes the programming phase unnecessary. Unlike programs,
semantic models retain the meaning of business processes and are open to
the Al tools and robots.

2. Modelling vs Programming

We believe that now it is time for the beginning of a gentle, but inevitable
process, which will replace programming by modelling in many significant
areas. Semantic Modelling is a mature and very developed area of research,
it provides a number of important advantages, since

— skipping the “programming phase” makes an application development
several times faster and fundamentally reduces the costs of mainte-
nance and modernization;

— modelling can supply Al and robots with explicit domain semantics
(whereas in programs the semantics dissolves);

— models (as opposed to programs) are directly comprehensible by a
much wider range of specialists, e.g., managers, consultants, analysts,
and lawyers.

A traditional scenario for developing an IT system starts with composing
technical specifications for programmers. A semantic model can be also
interpreted as a formal technical specification. But as soon as such a model
is built, programming is no longer required, since the model itself is “alive”
and executable.

We are developing and implementing the bSystem, a platform-as-a-
service, which supports the technology of building executable semantic

38 A. V. MANTSIVODA, D. K. PONOMARYOV

models as tools for constructing industrial-level information systems. bSys-
tem is based on document modelling, a version of Semantic Modelling built
around a concept of a document. bSystem relies on a paradigm of the Se-
mantic Modelling, which has been developed by Yu. Ershov, S.Goncharov
and D.Sviridenko [1]- [6]. They used the concept of a list superstructure
over datatype models in order to declaratively describe domains of dis-
course in such a way that the resulting models could be executable. This
means that data and knowledge handling procedures can be automatically
extracted from a model.

The idea of using documents as a basic metaphor for modelling (which
was coined in [8]) appeared to be very fruitful. The complexity of differ-
ent subject domains can not be addressed without appealing to cognitive
aspects. A subject domain can be arbitrarily complex by its nature, but
humans tend to choose those primitives, which are convenient for cognition.
The notion of a document is an example of such a primitive, which has been
employed for centuries and is evidently topical in the context of information
systems. It would be fair to say that this concept has been formed by the
human experience in information structuring and organization of social
processes. A document has a static and dynamic nature. The static aspect
of a document defines its structure and content, while the dynamic one
corresponds to modifications and versioning. Numerous activities, e.g.,
those related to the Enterprise Resource Planning and similar areas, can be
naturally described in terms of document processing, including the static
and dynamic aspects of documents. In this context, it is important to
study the complexity of formalization of these aspects from the cognitive
and computational point of view.

Theoretically, the key task in implementing this approach is to formalize
the life cycle of a semantic model (in particular, the life cycle of a document
model). In practice, models evolve over time and constantly change their
contents and descriptions. It is also essential that the models are open sys-
tems, subject to the influence of external parties (oracles). To reflect these
features in document modelling, we develop and formalize in this paper the
concept of the life cycle of document models. It is based on the notion of
a model fixed point. A fixed point is a stable state, which the model tries
to reach as a reaction to external disturbances. When some external oracle
causes disturbances in the model (for example, by introducing new data),
the model becomes unstable, perhaps even incorrect. By reaching a new
fixed point, the model reconciles with the updates.

Thus, reaching fixed points allows the model to find a balance between
soundness and dynamic updating. Only at the fixed point the model does
guarantee its soundness. In case, when a model cannot reach a new fixed
point after an external intervention, it considers this intervention as invalid
and restores the previous state it had before. This, in particular, allows
the model to cope with erroneous and malicious behaviours of oracles. In

WzBecTusi IpKyTCKOro rocyjapCTBEHHOI'O yHUBEPCHUTETA.
2019. T. 27. Cepusa «Maremarukas. C. 36-54

A FORMALIZATION OF DOCUMENT MODELS 39

this way, static logical models can be efficiently used in the dynamically
changing world.

The procedural behaviour of semantic models allows us to replace pro-
gramming in IT projects. Within the bSystem, we applied the technology to
the development of heavily interactive Web services in a FINTEC company,
for HR management, enterprise budgeting, retailer business analytics, and
other real-life applications. Our practice shows that replacing program-
ming by modelling results in at least five-fold increase in efficiency, both in
development, and maintenance and modernization, with the corresponding
savings of financial, labour, and time resources.

3. Principles of Document Modelling

A document model is a version of an executable semantic model, which
is based on the metaphor of the document as the basic construct for logical
descriptions. Document modelling implements our concept of knowledge
management.

First, the document models are executable. This makes the program-
ming stage unnecessary, since the model itself can play the role of an
information system.

Second, the model uses the notion of a document as a metaphor. The
document model is organized as a collection of logical structures that can be
interpreted as “ordinary” documents, while preserving all the advantages
of the Semantic Modelling and Artificial Intelligence. On the other hand,
from the users perspective, working with this model is identical to the
conventional work with documents.

In this section, we recall the basic notions of document modelling from
[7;8].

Let Q2 be a set. A sequence (over 2) is an expression

(1, em),

where e; € () are some elements. The empty sequence with no elements is
denoted as ().
To determine the number of elements in a sequence, we use the notion
of cardinality. We define the following cardinalities:
—) is the empty sequence
— 7 is a sequence with zero or one element
— | is a sequence containing exactly one element
— 4 is a sequence with one or more elements
— *1is a sequence with any number of elements.
A countable set of constants

40 A. V. MANTSIVODA, D. K. PONOMARYOV

= {’I’Ll,ng,...}

is called the set of names (identifiers). This set is divided into two disjoint
subsets of document form names lp and document field names lp.
A document field description is a tuple

(d,c),
where d € Ip is a field name and c is a cardinality (of the field value). For

instance, (age,!) is an example of a field description.
A document field is a pair

(d,v)
where d € [p is a field name and v is a sequence, a field value.

A document is the main concept of a document model.

— A document consists of fields and has a unique id, which is an identifier
given by a natural number.

— Each document is of one of the predefined document forms, which
play the role of templates that describe the structure of admissible
documents and transactions.

— Transactions represent instructions, which must be executed upon cre-
ation of a new document of a specific form, or a value change for some
field in a document of a specific form.

An instruction is an expression of the form CreateDoc(f) or SetField(id,
d,v), and a condition is an expression CreateDoc(f), SetField(f,d), or
SetField(f,d,v), where f € I is a document form name, id is a document
identifier, d € lp is a field name, and v is a field value. Informally,
CreateDoc(f) stands for the event of creating a document of a certain
form f, while SetField(f,d,v) means that the value of a field with name
d is changed in a document of a form f to a value v. The expression
SetField(id,d,v) is interpreted similarly. It is assumed that the form name,
document id, and field name parameters can be values of a document field.

Further, we introduce concepts of a rule and document form and the
central notion of a document. In comparison with [7;8], we use a simplified
definition of a rule in this paper for clarity of presentation.

A rule is an expression of the form

G— P

where G is a condition expression (a premise) and P is a sequence of
instructions (a conclusion).
A document form is a tuple

f=(f{di,. .. dn}, {r1...14})

UzBecTusi IpKyTCKOro rocyjapCTBEHHOI'O yHUBEPCHUTETA.
2019. T. 27. Cepusa «Maremarukas. C. 36-54

A FORMALIZATION OF DOCUMENT MODELS 41

where f € [is a form name, {d,...,d,} is a finite set of field descriptions,
and {ry...rg} is a finite set of rules such that:
— every condition appears in at most one rule as a premise;
— f is the only form name parameter, which can occur in a premise.
A document is a tuple

o= (f,id, {dy,...,dp})

where f € [p is a document form name, id is a document identifier, and
{d1,..., dyn} is a finite set of document fields such that their names are
exactly the names from the field descriptions of f.

A document model is a tuple consisting of a domain of field values and
a finite set of document forms

D= (Q,{f,...f.})

A state of a document model M is a finite set of documents

({o1,...0n})

where every o; is a document of a form f;, where j € {1,...,m}, with fields
having values from (2.

Therefore, the sets of field descriptions given in document forms rep-
resent the static part of the document model (i.e., the structure of doc-
uments). The dynamic part is given by rules. They have the following
informal semantics: whenever the condition in the premise of a rule holds
(i.e., if a document of a specific form is created or a value of a specific field
in a document is changed), the instructions from the conclusion of the rule
must be executed. The collection of instructions, which must be executed
upon rule firing, is called transaction.

In the document model approach proposed in [8] it is assumed that
actions like Create Doc and SetField can be performed by oracles (external
information sources, e.g., users) and these actions can yield rule firing. If
any of instructions fails during rule firing, then the whole transaction fails.
Thus, rules determine possible transitions between document model states,
since rule firing can yield different collections of documents (or document
versions). The operators, which check whether rule conditions are met
and which generate a sequence of instructions to be executed, are called
daemons (similar to the notion used in process programming).

It should be clear from the informal definition above that firing a rule
may cause other rules to fire and this process can repeat indefinitely long
in general. If there are no rules that can fire and no instructions that
must be executed, then the document model state is stable. In practice,
only a document model in a stable state can be used for querying, because
otherwise the information in a document model may be incomplete, due to

42 A. V. MANTSIVODA, D. K. PONOMARYOV

some pending instructions. Therefore, the principle task is to be able to
compute stable states of a given document model wrt inputs of oracles.

4. Fundamentals of Semantic Modelling

The concept of Semantic Modelling [1] — [5] has been introduced in 80’s
as an alternative to the logic programming paradigm. It is a formalism,
which is powerful enough to abstract away from the implementation details
of programming, while keeping the possibility to manually specify the order
of computations. One of the important features, which makes Semantic
Modelling particularly convenient is the built-in list type, which is general
enough to naturally represent numerous data types occurring in practice.
An algorithm or a problem domain is described in the Semantic Modelling
as a model, a logical theory, which contains two basic subtheories. The first
one specifies the list type and computability over lists. The second one
introduces (possibly recursive) definitions of domain specific predicates,
whose extension one wants to compute. The semantics of models (in par-
ticular, the extension of predicates) is given in terms of fixed-points. The
language of Semantic Modelling is expressive enough to reduce all common
program verification tasks to logical entailment. In fact, the language is so
powerful that it allows for reasoning over the constructed models both, at
the syntactic and semantic level.

The language of the Semantic Modelling is a first-order language with
equality interpreted over first-order list structures. Their domain is the set
of all possible lists (including the distinguished empty list [|) over some set
Q) and their signature contains basic operations for working with lists. In
particular, the domain contains all elements from €2, as well as lists with
elements from €, lists of lists, and so on. If every aq,...,a, is an element
from or a list, then [aq,...,a,] denotes a list over ay,...,a,. A list is
plain if it is empty or it holds that a; € Q, foralli =1,...,n

There are basic list operations such as

— head, which gives the first element of the list, if the list is not empty,
and [] otherwise;
— tail, which gives the remaining part of the list with the first element
removed, if the list is not empty, and | | otherwise;
— cons which appends an element to a list as the first one;
conc, which concatenates two lists.
There is a predicate C such that for any lists «, 8, it holds a C § if «v is
the starting segment of 8 and a predicate €, which designates containment
in a list.

The following axioms for list operations are assumed to be included into

any logical theory in the language of the Semantics Modelling:

WzBecTusi IpkyTCKOro rocyjapCTBEHHOI'O yHUBEPCHUTETA.
2019. T. 27. Cepusa «Maremarukas. C. 36-54

A FORMALIZATION OF DOCUMENT MODELS 43

tail(cons(a, B)) =
head(cons(a, B)) = «
(a # [] = cons(head(a), tail(a)) = «

tail([]) =[] head([]) =[]
consgconc(B),7) = conc(a, cons(B,7))

[c?nc(B),7) = conc(a, conc(B,7))

cone() = conc(a, []) =«

There are also list induction axioms of the form

(D] AVOVB(DTE = [B]7,0) — @

where ® is an arbitrary formula and [®]} denotes the formula obtained by
substituting free occurrences of the variable x with the term ¢ (avoiding
variable collisions).

There is a foundation axiom

MoVyed P(y) = () — Yad(a)

and the equal-size axiom of the form

a=f=VyeayCBAN(y#B—
36 € a cons(,08) C a A cons(v,d) C 3)))

where the bounded quantifier of the form v € o means that ~ is an element
of the list a. Bounded quantifiers play an important role in the Semantic
Modelling, since in the descriptions of real-world domains the choice of ele-
ments to reason over is typically finite. Formulas with bounded quantifiers
correspond to the class of Ag-formulas. The computational complexity of
these formulas over lists has been studied in [9)].

There is also a Agp-determination axiom, which states the existence of
a table function for any list o, which selects only those elements from «,
for which some property ® holds. Finally, there is a Ag-selection axiom,
which we also omit here for brevity; an interested reader can find the details
in [1] - [5]. The mentioned axioms constitute the background of any logical
theory in the language of the Semantic Modelling and are denoted as GES
(the Goncharov-Ershov-Sviridenko theory).

5. Formalization of Document Models

We are now ready to provide a formalization of document models in the
framework of the Semantic Modelling.

Let D = (Q,{f1,...f,}) be a document model. We define a logi-
cal theory 7Tp for D as a theory in signature X', where Y consists of

44 A. V. MANTSIVODA, D. K. PONOMARYOV

predicate and function symbols introduced in the formulas below. In par-
ticular, ¥’ contains pairwise disjoint subsets of constants FieldNames =
{fieldNamey, ..., fieldName,,}, FormNames = {formName; ,...,
formName,}, and Vals = {v1,...,vt}, m,n,k > 1, which stand for the
field and form names in D, as well as the names for the elements of 2. It
also contains function Form, which gives a form name for a document, and
the distinguished constants CreateDoc and SetField, which are used to
represent instructions.

We use the following notions and modelling conventions in our formal-
ization.

— All the above mentioned constants are interpreted as distinct ele-
ments, i.e., there is the unique name assumption axiom in 7p for these
constants.

— An instruction is given as a list of the form [CreateDoc, formName]
or [SetField,docID, field Name,value], where
formName € FormNames, fieldName € FieldNames, docID rep-
resents a natural number, and value is a field value.

— Natural numbers are modelled as lists in a standard way and we assume
that there is the sum + function and > predicate in X/ (we also use
the shortcut <), which are expressible in terms of the list operations.

— A queue is a list of instructions to be executed. A queue is updated
by daemons, which implement triggers on the events such as creating
a new document (of a given form) or changing a field value in a given
document.

— A situation is a list of instructions, it will represent the history of
executed instructions in our formalization. Moreover, the last executed
instruction will appear first in a situation.

— A field is given as a list with two elements: [fieldName,v]|, where
fieldName € FieldNames and v is a plain list over Vals, a value for
a field. The default value for any field is the empty list [].

— A document is a list of fields (the order of fields in the list is arbitrary).

— A model is a list consisting of triples [docID, doc, sit], where docID
is a natural number, doc is a document, and sit is a situation. A
model stores a document version in each situation which has ever taken
place. The head of this list is a triple, whose situation is the current
one, i.e., this situation consists of instructions (a history) that have
yielded the model. We use the following notation, where M is a model:

History(M) = tail(tail(head(M))).

In the formulas below, we assume that all the free variables are univer-
sally quantified.

We begin with the axioms of the theory 7p, which represent the static
part of the document model D, i.e., field descriptions and document forms.

UzBectusi IpkyTCKOro rocyjapCTBEHHOIO yHUBEPCHUTETA.
2019. T. 27. Cepusa «Maremarukas. C. 36-54

A FORMALIZATION OF DOCUMENT MODELS 45

For every field description (fieldName, card) from a document form in
D, the theory Tp contains an equation of the form

Field(x) = fieldName = head(z) = fieldName N Card(tail(xz)) (5.1)

where fieldName € FieldNames and Card is a predicate, which repre-
sents the cardinality of the elements in a plain list . One can easily show
the following property of the theory GES: for any list x and any cardinality
card € {?,!,+,x}, there is a predicate Card such that GES U {Card} =
Card(x) iff z is a plain list of cardinality card.

To represent document forms, Tp contains the following equation, which
defines how a blank document of a particular form must look like:

Blank(name) = document =

(/\ name # f A document =1[]) V \/ v (5.2)

feFormNames feFormNames

where every ¢y is a conjunction of the form

name = f A3dxq,...,x, € document /\ Field(x;) = fieldName; N
i=1...n
Va € document (x =x1 V...V =x,) Atail(z) =[] A

Form(document) = name

specifying, which fields must be present in a document of a form f (note
that all the field values are set to default, i.e., to the empty list).

To formulate the dynamic part of the document model, we introduce
three auxiliary functions. The following function (which is defined recur-
sively) gives the last used ID for a document in a model. When evaluated
on a given model and id = 0, the definition of the function implements
search for a triple in a model, whose first element (the ID) is the greatest
one among all other triples in model.

GetLastDocI D(model,id) = docID = model = | | A docID = id V
(head(head(model)) > id A
docI D = GetLastDocl D(tail(model), head(head(model)))) V

head(head(model)) < id A docID = GetLastDocl D(tail(model),id)
(5.3)

The next function gives an actual version of a document (from a model) by
its ID. It implements search for the first triple with a given ID (contained

46 A. V. MANTSIVODA, D. K. PONOMARYOV

in a model) and outputs the found document. If no triple with a given ID
is present in the model, then the function returns the empty list.

GetDocBylD(docID,model) = document =
head(head(model)) = docID A document = head(tail(head(model))) V
head(head(model)) = [| A document =[] V
head(head(model)) # docID A head(head(model)) # [] A
document = GetDocByID(doclI D, tail(model)) (5.4)

The next function provides a field value from the actual (the last) version
of a document with a given ID:

GetFieldV alue(docI D, fieldName) = tail((head(tail(
FindFieldPosition(fieldName, || |, GetDocBylD(docID)])))) (5.5)

It relies on the recursive function FindFieldPosition, which “splits” a
given document into a paritioned one (denoted as pdocument below), which
has the form [listy, liste] such that conc(listy, lists) = document and head(
listy) is a field with the required name (if there exists one in a document).
This auxiliary function is employed further to implement the operation of
changing a field value in an existing document.

FindFieldPosition(fieldName, pdocument) = pdocument’ =
head(head(tail(pdocument))) = fieldName A pdocument’ = pdocument V
tail(pdocument) = [| A pdocument’ = pdocument V
head(head(tail(pdocument))) # fieldName A tail(pdocument) # [] A

pdocument’ = FindFieldPosition(fieldName,newpdocument) (5.6)

where newpdocument is a shortcut for
[cons(head(tail(pdocument)), head(pdocument)), tail(tail(pdocument))]

In other words, if pdocument = [[a1,...,an],[b1,b2,...,b,]], then it
holds that newpdocument = [[a1, ..., am,bl], [ba, ..., by]].

Now we are ready to define the main recursive operator, which imple-
ments the dynamic part of the document model given by transactions.
Given a queue, it updates a model and the queue to the new state, based
on the definition of daemons. For the sake of readability, we split the
definition of the operator into three formulas (combined with disjunction)
and comment on them separately.

First of all, if the queue is empty (there is nothing to do), then the
update of a model is trivial, i.e., nothing is changed. If an instruction

UzBectusi IpkyTCKOro rocyZjapCTBEHHOI'O yHUBEPCHUTETA.
2019. T. 27. Cepusa «Maremarukas. C. 36-54

A FORMALIZATION OF DOCUMENT MODELS 47

in the queue is not a valid one (either CreateDoc or SetField) then the
whole queue is skipped and the model returned by the Update operator is
the initial model (this implements the transaction mechanism adopted in
the document modelling approach):

Update(initialmodel, model, queue) = model’ =
queue = [] A model’ = model V
(queue # [| A (head(head(queue)) # CreateDoc) A
(head(head(queue)) # SetField) A model = initialmodel) vV (5.7)

Otherwise the queue contains an instruction to create a document of a
specific form, or change a field value in a document having a certain ID.
In the first case, a blank document is created (which is implemented by
using existenial quantification), the instruction is removed from the queue,
and the queue is extended by daemons, which are implemented by the
NewDocTrigger function (see further). Finally, the created document is
added to the model and the Update operator is evaluated recursively on
fresh inputs. If a blank document of a form with name formName can
not be created (due to the fact that formName ¢ FormNames), then the
queue is skipped and Update returns the initial model:

head(head(queue)) = CreateDoc N
ddocument document = Blank(formName) A
((document = [] A model’ = initialmodel) V (document # [] A

model’ =Update(initialmodel, cons(newdoc, model), extendedQueue)))V
(5.8)

where formName stands for tail(head(queue)), newdoc is an abbreviation for
the list of the form [GetLastDocl D(model,0)+ 1, document,newhistory],
newhistory is a shortcut for cons([CreateDoc, formName|, History(mo-
del)), and extendedQueue is NewDocT'rigger(formName,tail(queue)).

In other words, newdoc represents a fresh document to be created in
the model and newhistory is a history extended with an action of creating
a document. The expression extendedQueue will be a queue obtained by
firing a document creation trigger.

The case of Set Field instruction in the queue is treated similarly, but the
formalization is technically more complex, because modifying an existing
document takes more steps than creating a fresh one:

48 A. V. MANTSIVODA, D. K. PONOMARYOV

head(head(queue)) = SetField N
((tail(pdocument) = [| A model’ = initialmodel) V
(tail(pdocument) # [| A model’ =
Update(initialmodel, conc(updatedDoc, model), extendedQueue))) (5.9)

where docID, fieldName, newFieldValue stand for head(tail(head(que-
ue))), head(tail(tail(head(queue)))), and head(tail(tail(tail(head(qu-
ue))))), respectively (recall the instruction modelling conventions listed in
the beginning of this section). Further, pdocument is an abbreviation for
FindFieldPosition(fieldName, Get DocByl D(docID, model)) and
updatedDoc is a shortcut for

conc(cons([fieldName, newFieldValue], head(pdocument)),
tail(tail(pdocument)))

Finally, extendedQueue is a shortcut for ChangedFieldTrigger(
GetDocBylI D(docI D, model), fieldName, newFieldV alue, tail(queue)).

Thus, updatedDoc is a document with an updated field value and
extendedQueue is a sequence of instructions provided by a trigger on a field
value change.

By the definition above, the whole queue is skipped whenever there is
no field with a specified name in a given document. Note that in this
case it holds tail(pdocument) = [] by the definition of FindFieldPosition
function.

Now we define functions, which implement daemons. Their purpose is to
extend the queue with a sequence of instructions depending on whether a
new document is created or a field value in an existing document is changed.
There are also additional conditions, which influence, what sequence of
instruction is chosen. Both functions have similar definitions:

(NewDocTrigger(formName, queue) = queue') = ®
(ChangedFieldTrigger(doc, fieldN ame, fieldV alue,queue) =
=queue)=V (5.10)

where ® and ¥ are formulas of the form

\/(Conditioni A queue’ = queue;)V
i€l
Vv (/\ —Condition;) A queue’ = queueese
el

UzBectusi IpkyTCKOro rocyZjapCTBEHHOI'O yHUBEPCUTETA.
2019. T. 27. Cepusa «Maremarukas. C. 36-54

A FORMALIZATION OF DOCUMENT MODELS 49

where [is a finite index set and every Condition; in @, is a formula of
the form formName = name, where name € FormNames, while every
Condition; in ¥ is of the form Form(document) = namey A fieldName =
names or formName = namey A fieldName = names A fieldValue =
value, where name; € FormNames, names € Field Names. Moreover,
none of the formulas Condition; appear twice in ® or V. Finally, queue; and
queuegse are formulas of the form cons(instry, .., cons(instry, queue), ...),
where n > 0 (if n = 0 then we assume that queue;/queue,se is queue) and
every instry, for k = 1,...,n, is an expression of the form [CreateDoc,
formName] or [SetField,docID, fieldName, fieldValue], with the pa-
rameters defined recursively by the following grammar (we use the Backus-
Naur form here for simplicity of presentation):

fieldValue ::= value

formName ::= formname | GetFieldValue(docID, fieldName)
docID ::= number | GetFieldValue(docID, fieldName)
fieldName ::= fieldname | GetFieldValue(doclID, fieldName)

where value € Vals, formname € FormNames, number (a list repre-
senting a natural number), and fieldname € FieldNames are constants.
Notice that the order of instructions appended to queue is determined by
the form of expressions queue; and queuegge.

The definition of the theory Tp is complete.

6. Properties of Formalization

The theory GESUTp is a conservative extension of GES, i.e., the axioms of
Tp do not modify the semantics of the predicates and functions introduced
in the background theory of the Semantic Modelling, which can be proved
by showing that any model of GESU7p can be expanded to a model of GES.

For a document model D, a state of D is represented by a list (appearing
as model in the axioms of Tp), which consists of triples [docI D, document,
situation] (see the conventions and notations in the previous section). Sim-
ilarly, a sequence of instructions is represented as a queue list. Thus, we
say that a list model or queue represents a state of D or a sequence of
instructions, respectively. These lists are used as arguments in the defini-
tion of the Update operator in Tp. Transactions over a document model
are formalized in the scope of NewDocT'rigger and ChangedFieldI'rigger
functions defined in 7p. We note that the definition of these functions
recalls the “if then else” construct and can be represented by using con-
ditional terms in the formalism of the Semantic Modelling [6]. By the
definition of Update operator, if some instruction issued by a rule can not

50 A. V. MANTSIVODA, D. K. PONOMARYOV

be executed (e.g., an attempt to create a document of an unknown form or
to modify a non-existing field in a document is made) then the whole queue
of instructions is ignored and the model returned by Update is the initial
model (being the first parameter of the operator). This implements the
transaction mechanism adopted in the document modelling, which cancels
the whole bunch of instructions if at least one of them fails.

Let D be a document model, S a state of D, () a sequence of instructions,
and let the lists model and queue represent S and @), respectively. The
formalization of the document model D provided by 7p has the following
key properties. It holds that

GES U Tp = Update(model, model, queue) = model’

iff model’ represents a stable model state obtained from S by applying Q.
In particular, it is possible to determine a state obtained from the empty
model (with no documents) by executing a set of user-specified instructions.
For example, queue can contain instructions representing user actions in
the system (e.g., creating several blank documents and changing some field
values in them). Then the value of Update([],[|, queue) gives the model
state obtained by taking into account daemons, which implement rule firing
on the user input.

An even more important observation is that the projection and planning
problems [10;11] can be reduced to entailment from GES U Tp. In the case
of projection, assume one is interested whether a document of a form with
name formName will exist in a state obtained from some model state S by
applying a sequence of instructions @ (for simplicity, we assume below that
S and () are the lists, which represent the model state and instructions,
respectively). Then it suffices to check whether the following holds:

GES U Tp = Jdocument € model
Form(document) = formName A model = Update(S, S, Q)

Similarly, the planning problem is reduced to entailment. Assume one
wants to know whether there is a sequence of instructions @), which brings
a given model state S to a desired one, where, e.g., a document of a form
with name formName exists. Then it suffices to verify whether

GESU Tp = 3Q IFdocument € model
Form(document) = formName A model = Update(S, S, Q)

If the proof of this entailment is constructive, then it is possible to
extract the corresponding sequence of instructions from the proof, e.g., a
value for the variable Q).

WzBecTusi IpkyTCKOro rocyjapCTBEHHOIO yHUBEPCHUTETA.
2019. T. 27. Cepusa «Maremarukas. C. 36-54

A FORMALIZATION OF DOCUMENT MODELS 51

Since the property of being a finite list is expressible in the formalism of
Semantic Modelling, we also obtain the following important result saying
that it is possible to verify termination of rule firing via logical entailment.
There exists a formula ® such that GES U 7p = @ iff the state obtained
from a model state S by executing a sequence of instructions @ is finite.

7. Summary and Outlook

We have introduced a formalization of document models in terms of
Semantic Modelling. Specifically, we have formulated the static part of a
document model (i.e., descriptions of fields and document forms) as ap-
propriate list structures. The dynamic part (transactions and daemons) is
given in terms of recursive predicates, whose extension is computed via fixed
points within the approach of Semantic Modelling. We have noted that
the proposed formalization is expressive enough for solving the key meta-
level problems in the document modelling such as projection, planning, and
termination of transactions. In particular, this allows for finding modelling
errors, simulating the consequences of user actions in a system without
changing its content, and finding a sequence of actions, which brings a
system to a desired state. In practice, this allows for answering questions
like: what actions must be performed in order to get an item on retail stock.
These features go beyond the capabilities of today’s document workflow
processing and Enterprise Resource Planning systems.

We plan to investigate the concept of the local simplicity [8] in terms
of our formalization. Also the algorithmic complexity of verifying the ex-
istence of finite fixed points w.r.t. rule firing will be studied, as well as
restrictions that must be imposed on the form of the business processes
(daemons) in order to guarantee an efficient solution to the projection
and planning problems. A quite interesting and promising direction is
the integration of the proposed formalism with the semantic probabilistic
inference [12] in order to solve Al tasks over document models. These are
the topics for the further research.

References

1. Ershov Yu.L., Goncharov S.S., Sviridenko D.I. Semantic Programming. Infor-
mation processing 86: Proc. IFIP 10th World Comput. Congress. 1986, vol. 10,
Elsevier Sci., Dublin, pp. 1093-1100.

2. Ershov Yu.L., Goncharov S.S., Sviridenko D.I. Semantic Foundations of Program-
ming. Fundamentals of Computation Theory: Proc. Intern. Conf.. FCT 87, Kazan,
Lect. Notes Comp. Sci., 1987, vol. 278. pp. 116-122. https://doi.org/10.1007 /3-540-
18740-5_28

52 A. V. MANTSIVODA, D. K. PONOMARYOV

3. Goncharov S.S., Sviridenko D.I. ¥-programming. Transl. II. Amer. Math. Soc.,
1989, no. 142, pp. 101-121.

4. Goncharov S.S., Sviridenko D.I. ¥-programming and its Semantics. Vychisl.
Systemy, 1987, no. 120, pp. 24-51. (in Russian).

5. Goncharov S.S., Sviridenko D.I. Theoretical Aspects of X-programming. Lect.
Notes Comp. Sci., 1986, vol. 215, pp. 169-179. https://doi.org/10.1007/3-540-
16444-8_13

6. Goncharov S.S. Conditional Terms in Semantic Programming. Siberian Mathemat-
ical Journal, 2017, vol. 58, no. 5, pp. 794-800.
https://doi.org/10.1134/S0037446617050068

7. Kazakov I.A., Kustova I.A., Lazebnikova E.N., Mantsivoda A.V. Build-
ing locally simple models: theory and practice. The Bulletin of Irkutsk
State University. Series Mathematics, 2017, vol. 21, pp. 71-89. (in Russian).
https://doi.org/10.26516/1997-7670.2017.22.71

8. Malykh A.A., Mantsivoda A.V. Document Modelling. The Bulletin of Irkutsk
State University. Series Mathematics, 2017, vol. 21, pp. 89-107. (in Russian).
https://doi.org/10.26516 /1997-7670.2017.21.89

9. Ospichev S., Ponomarev D. On the Complexity of Formulas in Semantic Program-
ming. Siberian Electronic Mathematical Reports, 2018, vol. 15, pp. 987-995.

10. Pirri F. and Reiter R. Some Contributions to the Metatheory of the Situation
Calculus. J. ACM, 1999, vol. 46, no. 3, pp. 325-364.

11. Reiter R. Knowledge in Action: Logical Foundations for Describing and Imple-
menting Dynamical Systems. MIT Press, 2001.
https://doi.org/10.7551 /mitpress/4074.001.0001

12. E. Vityev. Semantic Probablistic Inference of Predictions. The Bulletin of Irkutsk
State University. Series Mathematics, 2017, vol. 21, pp. 33-50. (in Russian).

Andrei Mantsivoda, Doctor of Sciences (Physics and Mathematics),
Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Rus-
sian Federation, tel.: (3952)521241 Sobolev Institute of Mathematics, 4,
Acad. Koptyug av., Novosibirsk, 630090, Russian Federation, tel.: —+7
(383) 3306660 (e-mail: andrei@baikal.ru)

Denis Ponomaryov, Candidate of Sciences (Physics and Mathemat-
ics), Ershov Institute of Informatics Systems, 6, Acad. Lavrentjev pr.,
Novosibirsk, 630090, Russian Federation; Sobolev Institute of Mathematics,
4, Acad. Koptyug av., Novosibirsk, 630090, Russian Federation, tel.: +7
(383) 3306660; Novosibirsk State University, 1, Pirogova str., Novosibirsk,
630090, Russian Federation (e-mail: ponom@iis.nsk.su)

Received 10.10.18

(DOpMaJII/I3aIH/I$[AOKYMEHTHDbIX Mo,ae.nef/i cpeacrBaMm
CeMaHTUI€eCKOro Mmoae/JimpoBaHusd

A. B. Mannusona

Hprymexuti 2ocydapemeennniti yrnusepcumem, HUpxymcerx, Poccutickas
Dedepavun, Unemumym mamemamury um. C. JI. Coboresa CO PAH, Ho-
socubupck, Poccutickas @edepayus

WzBectusi IpKyTCKOro rocyjapCTBEHHOIO yHUBEPCUTETA.
2019. T. 27. Cepusa «Maremarukas. C. 36-54

A FORMALIZATION OF DOCUMENT MODELS 53

1. K. Tlonomapes

Hrnemumym cucmem ungopmamuru um. A.1l. Epwosa CO PAH, Wn-
cmumym mamemamuru um. C. JI. Coboaesa CO PAH, Hosocubupckui
2ocydapemeennoill ynusepcumem, Hosocubupcer, Poccutickan Dedepayus

Awnnoramusi. B nannoi pabote Mbl (hopMasin3yeM ODIIY 0 KOHIIEIUIO JOKYMEHTHOM
MOZIE/IM B TepMHUHAX ceMaHTudeckoro mogenunpoBanms (CM). Mer cumraem, 9To wmiest
KCIIOJIb30BaHUsl JIOKYMEHTOB B KadyecTBe 6a30BOil MeTadOpbl JJIsi MOJIETUPOBAHUS SIB-
JISIETCSI OYEHDb II0JIE3HOM, IIOCKOJIbKY OHa obecriednBaeT HEeOOXOJUMBIN OajlaHC MEeXKIY
JIOTUIECKUMH METO/IaMU OOpabOTKY 3HAHWI M KOTHUTUBHBIMU ACIEKTAMM, CBI3AHHBIMU C
JIOCTYITHOCTBIO JJAHHBIX METOJOB JJIsi HAMHOIO 60Jiee MIMPOKOI ayiuTOPUH, 9eM coobIie-
CTBO MPOGECCUOHATBHBIX MATEMATHKOB. [IpemerHast 061aCTh MOXKET OBITH CKOJIb YTOTHO
CJIOXKHOW TIO CBOEM MPUPOJIe, OIHAKO JIOJM CKJOHHBI BBIOMPATH TAKWE OIMUCATETbHBIE
MPUMUTHUBBI, KOTOpbIe Oojiee ymoOHBI it BocmpusaTusi. [loHsTHE HOKyMeHTa SBJIAETCS
MIPUMEPOM TaKOr0 MPUMHUTUBA, KOTOPBI BEKAMU HCIOJIB30BAJICS JIFOJBMU, U OCTAETCS
OJIHMM M3 Ba)XKHEWINX B 310Xy MH(MOPMAIMOHHBLIX cucTeM. KJIloueBbIM Ka4ecTBOM OIU-
CaHUsl CEMaHTUKM JIOKYMEHTHBIX Mojeseil B pamkax napamurmbl CM siBjsiercst To, 9TO
CEMaHTHUYECKOEe MOJETUPOBAHNE JIE€IaeT JOKYMEHTHBIE MOJEIN HCIOJHseMbIMH. Vcmost-
HsIEMbIe MOJEU MOTYT HAIPSIMYIO MCIOJb30BATbCsI B Ka4eCTBE NMPAKTHIECKUX UHMOP-
MAIlMOHHBIX CUCTEM, M T4 YepTa JeJaeT ITall IIPOrPaMMUPOBAHUS U3JIUITHUM. 3aMeHsist
MIPOrpaMMUPOBAHUE HA MOJIEIMPOBAHNE, MbI ITPUHIIAIHNAJIHHO TOBBINTIaeM 3(PHEKTUBHOCTH
pa3spaboTKu U MOIEPKKUA WH(POPMAIMOHHBIX CUCTEM, & TAKXKe JEJIaeM TaKHhe CHCTEMBI
Py KEJTIOOHBIME /I CPEJICTB UCKYCCTBEHHOTO MHTE/IJIEKTA.

KuroueBbie cjioBa: ceMaHTUYECKOE MOJIEIMPOBAHNE, JOKYMEHTHAs MOJEb.

Cnucok JuTeparypbl

1. Ershov Yu. L., Goncharov S. S., Sviridenko D. I. Semantic Programming //
Information processing 86: Proc. IFIP 10th World Comput. Congress. Vol. 10.
Elsevier Sci., Dublin, 1986. P. 1093-1100.

2. Ershov Yu. L., Goncharov S. S., Sviridenko D. I. Semantic Foundations
of Programming // Fundamentals of Computation Theory: Proc. Intern.
Conf. FCT 87, Lect. Notes Comp. Sci. Kazan, 1987. Vol. 278. P. 116-122.
https://doi.org/10.1007/3-540-18740-5 28

3. Goncharov S. S., Sviridenko D. I. ¥-programming, Transl. IT // Amer. Math. Soc.
1989. N 142. P. 101-121.

4. Goncharov S. S., Sviridenko D. 1., ¥-programming and its Semantics // Vychisl.
Systemy. 1987. N 120. P. 24-51.

5. Goncharov S. S., Sviridenko D. I. Theoretical Aspects of 3-programming //Lect.
Notes Comp. Sci. 1986. Vol. 215. P. 169-179. https://doi.org/10.1007 /3-540-16444-
8 13

6. Goncharov S. S. Conditional Terms in Semantic Programming // Siberian Mathe-
matical Journal. 2017. Vol. 58, N 5, P. 794-800.
https://doi.org/10.1134/S003744661 7050068

7. TlocTpoeHue JOKATBLHO-IIPOCTBIX MOAENel: Meromonorus u npaktuka /| U. A. Ka-
3akoB, 1. A. Kycrosa, E. H. Jlaze6nukosa, A. B. Mannueona // Uss. Upkyr. roc.
yu-ta. Cep. Maremaruka. 2017. T. 22. C. 71-89. https://doi.org/10.26516,/1997-
7670.2017.22.71

54 A. V. MANTSIVODA, D. K. PONOMARYOV

8. Mambix A. A., Manmmsoga A. B. lokymentroe monenuposanue // U3, UpkyT.
roc. yu-ta. Cep. Maremaruka. 2017. T. 21. C. 89-107.
https://doi.org/10.26516,/1997-7670.2017.21.89

9. Ospichev S.; Ponomarev D. On the Complexity of Formulas in Semantic
Programming // Siberian Electronic Mathematical Reports. 2018. Vol. 15.
P. 987—995.

10. Pirri F., Reiter R. Some Contributions to the Metatheory of the Situation
Calculus // J. ACM. 1999. Vol. 46, N 3. P. 325—364.

11. Reiter R. Knowledge in Action: Logical Foundations for Describing and
Implementing Dynamical Systems. MIT Press, 2001.
https://doi.org/10.7551 /mitpress,/4074.001.0001

12. Bursies E. E. Cemantndeckuii BepOsiTHOCTHBIH BBIBOJ IpejacKaszauuii // 113s.
Upkyt. roc. yu-ta. Cep. Maremaruka. 2017. T. 21. C. 33-50.

Annpeii BajmepbeBuu MauiuBoga, J10KTOp (PU3NKO-MaTEMaTHIeC-
KUX HaykK, npodeccop, UHCTUTYT MaTeMATHKU, SKOHOMUKN U UH(MOPMATHU-
ku, VIpKyTCcKuil rocyjapcrBeHHblil yauBepcuteT, Poccuiickass ®eneparmst,
664003, r. Upkyrck, yi. K. Mapkca, 1; Uacruryt maremaruku um. C. JI. Co-
6omesa CO PAH, Poccuiickasi @enepanusi, 630090, r. Hosocubupck, mp.
Axaznemuka Konriora, 4, rer.: (3952)521241 (e-mail: andrei@baikal.ru)

Henunc Koucrautunosu4 IloHomapes, kanangar (pu3nko-MaTeMaT-
geckux Hayk, VacTuryT cucrem madopmaruku umeru A. I1. Epmosa CO
PAH, Poccuiickasi @eneparust, 630090, Hosocubupck, mnp. Axajgemuka
JlaBpenthena, 6; Uucruryr maremaruku um. C. JI. Cobosera, Poccuiickast
Oeneparus, 630090, r. HoBocubupck, np. Akamemuka Kontiora, 4, Tei.
(383)3306660; Hoocubupckuii rocyapcTBeHHbIil yausepcuter, Poccuiickast
Oeneparus, 630090, HoBocubupck, yi. [luporosa, 1
(e-mail: ponom@iis.nsk.su)

Hocmynuaa 6 pedaxyuro 10.10.18

WzBectusi IpKyTCKOro rocyZapCTBEHHOI'O yHUBEPCHUTETA.
2019. T. 27. Cepusa «Maremarukas. C. 36-54

