PCTBEY,
06‘&‘16’9;_ Cepust «<MaremaTuka» N3BECTMUAA
S Sy _ Nprymerozo
,Sf Elj””!l& E 2018. T. 26. C. 91104 20CcYy0apPCMEEHHO20
O [ojangaapr| § . . yHusepcumema
% & OnaftH-70CTyI K XKYypHAJY:
% L@%‘,: v http://mathizv.isu.ru
YK 519.6

MSC 41A25, 65D99
DOI https://doi.org/10.26516/1997—7670.2018.26.91

Some Modifications of Newton’s Method
for Solving Systems of Equations

V. A. Srochko
Irkutsk State University, Irkutsk, Russian Federation

Abstract. The problem of numerical solving a system of nonlinear equations is consid-
ered. Elaboration and analysis of two modifications of the Newton’s method connected
with the idea of parametrization are conducted. The process of choosing the parameters
is directed to provision of the monotonicity property for the iteration process with respect
to some residual.

The first modification uses Chebyshev’s residual of the system. In order to find the
direction of descent we have proposed to solve the subsystem of the Newtonean linear
system, which contains only the equations corresponding to the values of the functions
at a current point, which are maximum with respect to the modulus. This, generally
speaking, implies some diminution of the computational complexity of the modification
process in comparison to the process typical of Newton’s method. Furthermore, the
method’s efficiency grows: the subsystem can have its solution, when the complete system
is not compatible. The formula for the parameter has been derived on account of the
condition of minimum for the parabolic approximation for the residual along the direction
of descent.

The second modification is connected with the Euclidean residual of the system. It
uses the Lipscitz constant for the Jacobi matrix. The upper bound estimate for this
residual in the form of a strongly convex function has been obtained. As a result, the
new modification has been constructed. Unlike that for Newton’s method, it provides
for nonlocal reduction of the Euclidean residual on each iteration. The fact of global
convergence with respect to the residual for any initial approximation at the rate of
geometric progression has been proved.

Keywords: nonlinear system of equations, Newton’s method with parameter, modifica-
tions.
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Introduction

The problem of numerical analysis for the systems of nonlinear equations
still retains its theoretical and application urgency in the aspect elevation
of both efficiency and diversity of the methods used for its solving.

No doubt, the main approach used for solving systems of nonlinear
equations is the classical Newton’s method (NM) which attracts atten-
tion of specialists in computational mathematics during many decades.
Presently, one can find a large number of NM modifications, which provide
for improvement of some characteristics of the iteration process (complexity
of realization, domain and rate of convergence, property of monotonicity,
etc.) [2;5-7;9-12]

In the present paper, the author constructs two modifications of NM
with alternative characteristics. The basis of the approach is formed by a
technology of NM with parameter, which is quite natural from the view-
point of optimization methods. In this case, the choice of the parameter
is directed to provision of the property of monotonicity of the iteration
process with respect to some residual.

The first modification (M) uses Chebyshev system’s residual (maximum
of modules). To the end of finding the direction of descent with respect to
this residual we propose to solve the subsystem of the Newtonean linear
system, which contains only equations corresponding to maximum (with
respect to the modulus) values of functions at a current point. The normal
solution of this subsystem, in which the number of equations is, in the
general case, smaller than the dimension of initial system, is taken as the
basis. This, generally speaking, leads to the reduction of the computational
complexity of modification M7 in comparison with NM. Furthermore, mod-
ification M; can work (the subsystem has a solution), when the iteration
of NM is not realized (the full system is not compatible). Absence of the
guaranteed diminution of the residual for the proposed value of the param-
eter, which is obtained from the condition of minimum of the parabolic
approximation, is considered as a minus of the modification process.

The second modification (Ms) is connected with the system’s Euclidean
residual, and it uses the Lipschitz constant for the Jacobi matrix, which
can be found in conditions of the theorem on convergence of NM. An
upper estimate for this residual in the form of a strongly convex function
(majorant) has been obtained. Along the Newtonean direction of descent
this majorant is bounded in its turn by the convex parabola, whose min-
imization leads to an obvious formula for the parameter. As a result, we
have obtained a modification My, which, unlike that of NM, provides for
the nonlocal diminution of the Euclidean residual on each iteration. The
fact of global convergence of My with respect to the residual (for any initial
approximation) at the rate of geometric progression with denominator (0,5)
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SOME MODIFICATIONS OF NEWTON’S METHOD 93

has been proved. Note that the Lipschitz constant, which exists in My, may
be computed by the formula for quadratic systems.

1. Newton’s method and the corresponding relations

Consider the following system of equations

fi(z1,..,xn) =0, i=1n (1.1)

under the assumption that f; : R™ — R are continuous-differential func-
tions with the gradients V f;(-).

Having assumed that = (21, ...,zy,), F' = (f1,..., fn), let us proceed to
the vector form

F(z) =0. (1.2)

Let F'(x) be a Jacobi matrix for the vector function F(z) with rows
A standard formula of the Newton’s method with the application to
equation (1.2) has the form:

Pt =gk — (F' (@) IR (), k=01, .. (1.3)
Within frameworks of system (1.1) this formula is realized as follows

k+1

x =2F+pF k=01, ..,

where vector p* is a solution of the linear system

(Vfi(z"), z) = —fi(a"), i=Tn. (1.4)
The iterative procedure

pF = 2F 4+ ozkpk, k=01, ...
with parameter oy > 0, which can be obtained with the aid of an explicit
formula or as a result of one-dimensional search to the end of diminution of
the residual o(z) of system (1.1) on a set of points z¥(a) = zF+ap®, a >0
is a natural modification of Newton’s method. The extremum property is
the sufficient condition of such diminution: vector p” is the direction of
descent of function o(z) at point z*.
Consider now the following residual function in the Euclidean form

pr@) = Y f@).
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Hence vector pF is the direction of descent of function ¢; at point z* :
©1(2¥) > 0. Indeed, the derivative with respect to the direction p* is
negative:
(Vi (ah), p*) = =21 (a") < 0.
Next, consider the conditions of the theorem on convergence of NM in
the form (1.3) [1;8]
1) the vector function F(x) is continuous differentiable in the domain

Ss={z: ||z —2¥||<d}, 0>0,

where z* is the solution of equation (1.2);
2) for all x € Sy there exists an inverse matrix (F”(z))~!, furthermore,

N(F (@) <1, o1 >0
3) for all z, y € Ss
|IF(z) = F(y) — F'(y)(z — y)|| < asllz —yl|%, a2 >0;

4) 29 € S, e=min{s, 1}, a=ajas.
Under these conditions, the quadratic convergence of NM is ensured by
the following inequality

[[a*+ — 2] < afa® — 2|2

Let us pay attention to condition 3), which has a nonstandard character:
under the sign of the norm stands its increment minus its linear part. The
Lipschitz condition for the Jacobi matrix are more preferable (the matrix
norm and the vector norm are correlated)

I1F'(z) = F'(y)ll < Lllx = yll, x,y € Ss,

from which follows condition 3) for ay = L [3;5].

Right the Lipschits condition may be taken as the basis for constructing
modification Ms. In this connection, let us identify the systems (1.1) with
quadratic functions

fie) = 3@ A) + 0, 2) i, i=Tm,

where A; € R™*" is a symmetric matrix; b* € R", ¢; € R.
Consider the Lipschitz condition for the gradient V f; in the Euclidean
vector norm || - ||2

IV fi(z) = Vfi(y)ll2 < l|Aill2llz = yll2, =,y € R™ (1.5)

Here ||A;||2 is a spectral matrix norm. On account of the property of
symmetry this is a spectral radius of matrix A; : ||4;||2 = p(4;). According
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SOME MODIFICATIONS OF NEWTON’S METHOD 95

to the known property p(A;) < ||A;||, where ||A4;|| is any norm of matrix
A;.

Let us verify the Lipschitz condition for the matrix F'(z) on R™, while
using the Frobenius matrix norm || - || and the Euclidean vector norm
coordinated with it

1F'(z) = F'(y)llr < Lllz —yll2, @, y€R" (1.6)

On account of the structure of matrix [F'(z) — F'(y)] and inequality
(1.5), we obtain

I1F'(x) = F')lIF =D IV filz) = Viw)ll3 <
=1

< <Z IIA@-II%) [l — yll3.
i=1

Whence we come to the Lipschitz condition
|F'(z) = F'()llF < La|lz — yll2, z,y€R"

with the constant

Ly = (Z PQ(A1)>

Note further that the matrix norm || A;||r is also admissible in inequality
(1.5), what leads to the Lipschitz condition with a constant

Lr = (Z um»u%)

2

In this case, Ly < L.

Therefore, in case of quadratic systems, the Jacobi matrix satisfies the
Lipschitz condition on R™ with the constants Ly, L, which are expressed
via the norms of matrices of secondary derivatives A;, i = 1, n.

In the general case, it is necessary to obtain estimates for matrices of
the second derivatives V2 f;(z), i = 1, n in some domain Ss

IV?fi()llr < bi, =€ Ss.

As a result, we arrive at the Lipschitz condition of the form (1.6) on Ss

with the constant
n 3
L= (Z z?) :
i=1
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2. Chenyshev’s residual. The first modification

Let us define the following residual function of system (1.1) at point x

p2(w) = max |fi(z)].
Let us identify a set of indices of the active (the most deviating from
zero) functions at this point

Iz)={i=1,...,n: |fi(z)] = p2(x)}.

Consider the issue of differentiability of function po(x) with respect to
the directions.

Let at some point y € R™ function f;(z), i € I(y) is different from zero:
fi(y) # 0. Then function |f;(z)| is continuously differentiable at point y
with the gradient

VIfi(y)l = Vfi(y) signfi(y).
Let now proceed to function ¢s(z). On account of the known result for the
function of maximum [4] we come to the conclusion on differentiability of
function @9(x) at each point y : @2(y) > 0 with respect to any direction
q € R, q # 0 with the derivative
dipa (y)

Tq - f&%(Vﬂ(y), q) signfi(y)-

Now let us define vector ¢(y) as a solution of the linear system
(Vfily), z) = —fily), i€ 1(y).

The corresponding derivative with respect to the direction ¢(y) may be
expressed as follows:

dea(y) e [ () siam £ _
daly) [ fily) signfi(y)]

= max (—[fi(y)]) = max[—ps(y)] = —pa(y) < 0.
i€l(y) i€l(y)

Therefore, vector ¢q(y) gives the direction of descent for the residual
function @o(x) at point y : ¢a(y) > 0.

Next, it is possible to organize some procedure of local descending along
the direction ¢(y) to the end of reduction of the residual 9. Although,
when following [6], one can find an explicit formula for an acceptable step
along ¢(y) within the frames of the following scheme.

Let us conduct parabolic approximation of the function

s(a) = pa(y + aq(y)), a>0
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acccording to the rule

dpa(y)
dq(y)

Coefficient ¢ may be found from the condition of interpolation when
a=1:

s(a) = pa(y) + a+ca? = wa(y)(1 — ) + ca’. (2.1)

s()=c = c=pa(y+qy)).

Step a(y) may be expressed, while proceeding from the condition of
minimum for the approximation

wa(y + q(y))a2 — a(y)a — min, «o > 0.

As a result, we obtain the desired expression for the step:

aly) = p2(y)
202(y +a(y))
Let us consider the iteration description of the proposed modification
M;.
Let k = 0,1,..., ¥ € R™. Identify the indices of active functions at
point xk

Io={i=1,...,n: |fi(z")| = ga(zF)}

and obtain solution ¢* for the linear system
(Vfi(z®),2) = —f;(2F), i€l (2.2)
Now compute the step

oo (zF)

Bro= s
2()02(1'k + q"“)

and construct a sequential approximation
F = 2k 4 BgF

Remark 1. A linear system (2.2) represents a fragment of the linear
system of NM with respect to active functions. It is advisable to find a
normal solution of system (2.2) such as a linear combination of gradients
of active functions:
k
T = Z vV fi(@").

JEly

This leads to a linear system having the dimension equal to the number of
the functions, which are the most deviating from zero .
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Remark 2. The choice of step 8; does not, generally speaking, guarantee
any reduction of residual @s in case of transition z* = 2**1 due to the
approximate character of relation (2.1). Nevertheless, obtaining an explicit
expression for the stepwise parameter is — due to the definite approximation
of the residual function — a desirable requirement in case of constructing
the methods for solving the systems of equations in [2;6].

3. Euclidean residual. The second modification

Consider the system (1.1) in its vector form (1.2) and define the residual
function in the Euclidean norm

(@) = (F(x), F(z))% = ||F(2)]].

Let us find the the upper functional estimate for the residual ¢(x) (the
majorant function) under the assumption that the Jacobi matrix F’(x)
satisfies the Lipscitz condition on R™ with constant L (the matrix norm
correlated with with the Euclidean norm)

I1F'(z) = F')ll < Lllz —yll, =, y€R"

It is known, this condition implies the following estimate:

1F(x) = F(y) = F'(y)(z — y)l < %LHx —ylP.

k

Now, when putting here y = =%, we obtain the following

|1F(@) = F(z") = F'(z")(x = 2*)|| < éLllfv — "%,
Next, let us use the obvious inequality for the difference of the norms
lal| = [b]] < [la —b]|.
On account of the previous estimate we obtain:
|1F ()] = ||1F(2*) + F' (") (2 — 2| <
< IF(@) ~ Fa¥) — F'(a*) @ — a¥)| < 3Ll — 24|12

As a result, we obtain the upper estimate (estimate from above) for the
residual
p(a) = [|[F(@)]| <ri(z), =R

with the majorant
1
rip(x) = ||F(a*) + F'(a*)(z — 2M)|| + oLl — ||,
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Note that ¢(2*) = r(2¥). Furthermore, the following important prop-
erty takes place: function ri(x) is strongly convex on R"™ with constant
(3L). This means that for any 2!, 2 € R" and « € [0,1] satisfied is the
following inequality

ri(oat +(1 - a)2?) < org(a) + (1~ a)ri(e?) — 3Lo(1 - a)lla’ — a2

Now let us conduct the iteration description of the second modification
(Ma).
Let us define the set

D={xeR": p(x)#0, detF'(x) # 0}

of nonsigular points, which do not represent the solution of system (1.2).
Let k =0,1,..., ¥ € D. Let us find an auxiliary point y* according to
Newton’s method, while solving the linear system

F(aF) 4+ F'(2%)(z — 2%) = 0.

This is the point corresponding to the minimum of the first addend in the
expression of ri(z). Note that

P A, ) = o), ) = LIl - P
Now we can form the following convex combination:
() = (1 - a)z* +ay®, aecl0,1].
Due to the property of strong convexity of function r(z) we have:

(e (@)) < (1 - )r(e¥) + ar(v) — 2 Lol — a)lg* — 2*]”

After obvious transformations in the right-hand side, we obtain the
estimate quadratic with respect to « estimate

(e () < o(eh) — g+ Sl — M2 (31)

Now we are solving the problem of finding the minimum for the convex
parabola:

1
sp(a) = §L||yk —2F?a? — p(z®)a — min, o €[0,1].

As a result, we obtain the following expression for the step:

p(a*) }

ap =ming l, —————
{ Lily* — «*[]?
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Let us now formulate the following approximation

k+1 _ wk + Oék(yk _ wk)

x
Note the following important characteristic of the iteration.

Lemma 1. There exists a property of nonlocal improvement with respect
to the residual: o(x*1) < p(zF).

Proof. According to the estimate obtained above, @(z*+1) < rp(zF*1).
Next, due to (3.1) for a = aj, we obtain

re(@®h) < o(a*) + sp(ar).

Since si(0) = 0, ds’“(a ‘a 0= —p(z¥) <0, we have s(az) < 0. Conse-

quently, 7y (z+1) < p(a").
O

Remark 3. The complexity of realization of the modification obtained
coincides with that of NM. The improvement is bound up with monotonicity
with respect to the residual, which is not guaranteed by NM .

Remark 4. According to the iteration formula NM y* = 2% + pF, i.e
modification M, is represented in the form z*+1 = 2% + agp®, oy € [0,1].
This is NM with parameter. If o, = 1, then we obtain a NM iteration with
the property of improvement with respect to the residual. If ap < 1, then
an obvious approximation z¥%! is on the segment [z, y*]..

4. Estimation of reduction of the residual. Convergence of M>

Let us study the issue of convergence of modification Ms with respect
to the residual under the condition 2* € D, k = 0,1, ...
Consider the quadratic estimate (3.1) when a = ay,

1
Q(aT) < (@) < (1 — a)p(2) + gLHy’“ — 2*|]*af. (4.1)
Introduce the denotation
S
Ljy* — a*]|2

Hence ay, = min{1,v;}.
Consider the first case, when 7, <1 = aj = . From (4.1) we obtain

1 1

gp(ﬂ:k‘H) <(1- Vk)go(xk) + §7k%0(33k) =(1- §7k)30(xk)
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Consider the second case: 7, > 1 < o(2F) > L|y* — 2F|2.
Hence aj = 1, and inequality (4.1) acquires the following form:

1 1
(") < SLIY* = aMP < ("),

Having joined these two cases, we obtain an estimate of reduction of the
residual on the iteration

ozt < { (1= 3ym)p(a®), w <1,

The sequence {((z*)} is monotonously decreasing and bounded, hence
it is converging, i.e.

oz — p(ak) =0, k— .

Suppose that the case, when ~v; < 1, is satisfied an infinite number
of times, i.e. there exists a sequence of indices kj, j = 1,2,... such that
Yie; < 1. Hence

| 1 o
p(a ) < (1= gme(a®), j=1.2,.

Whence we have

| | 1 |
p(zhth) — p(ah) < —gwm(mk’)-

When j — oo, the difference in the left-hand side converges to zero.
Consequently,

@* (k)

Vi, P ()

According to the definition of point y* we have
P — b = [P )] ),

Suppose that the inverse matrix is bounded above with respect to the
norm in domain D

IF' @) <C, zeD.
Hence
Iy — 2™ || < |I[E @) - [P @) < Cp(a®).
Furthermore, from (4.2) we obtain the lower bound

2(,.k; 1
(b > @) i=1,2,...
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The latter contradicts to the fact of convergence
'ykjgo(xkf) —0, j— oo.

Consequently, the assumption of infinite realization of the case, when
v < 1, is wrong, i.e. this inequality is fulfilled a finite number of times in
the process iterations.

Therefore, it is possible to find an index kg such that for k > kg the
condition ~y, > 1 is satisfied, i.e.

Pz < Sp@®), k=koko+1,...

N |

Therefore, we have proved the property of convergence with respect to
the residual: p(z¥) — 0, k — oco. The rate of convergence is represented by
a geometrical progression with denominator % The domain of convergence
is represented by set D.

In the case, when ~; < 1, reduction of the residual is characterized by
the following inequality

with multiplier (1 — %'yk) € (%, 1).
Conclusion

The present paper has described the techniques of constructing two
new modifications of Newton’s classical method, which are connected with
parametrization of its iteration formula.

The first modification uses Chebyshev’s residual and on each iteration
leads to obtaining a solution for some subsystem of the Newtonian linear
system, what improves characteristics of the method.

The second modification uses the Lipschitz constant for the Jacobi ma-
trix and provides for nonlocal reduction of the Euclidean residual on each
iteration. The fact of global convergence of the iteration process with
respect to the residue at the rate of geometric progression has been proved.
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HexkoTopbie momudukanuu meroga HeroToHna
JJIsI pelieHusi CUCTEM yPaBHEHU

B. A. Cpouko

Hpxymexuti 2ocydapemeennmidi ynusepcumem, Hprxymex, Poccutickas
Dedepavus

Awnnoramusi. PaccmaTpupaercs 3a/1a4a YUCIEHHOTO PEIIEHUs] CUCTEMbI HEJTHHENHBIX
ypasuennii. [IpoBomurcs pazpaborka u obocHOBaHME ABYX Mommdukarmii meroma Huro-
TOHA, CBSI3AHHBIX C HJeell nmapamerpusanuu. [Ipu sTom BBIOOP mapameTpa HaIpaB/eH Ha
obecrievuenne CBOMCTBAa MOHOTOHHOCTH MUTEPAIMOHHOTO MIPOITECCa O HEKOTOPOIl HEeBs3Ke.

IlepBasi mommdukaluss UCIOIb3yeT 4YeOBbINIEBCKYI0 HEBsI3KY cucTeMbl. st moucka
HalIPaBJICHUA CIIyCKa IIPeJIaracTCd PelIaTb IIOACUCTEMY HBIOTOHOBCKON JIMHEHHOU CH-
CTeMBbl, KOTOpasl COJEPXKUT TOJIBKO ypPaBHEHUSI, COOTBETCTBYIOIIVE MaKCHUMAaJIBHBIM II0
MOJIYJTIO 3HAYEHUAM (DYHKINN B TEKYIIEH TOUKE. DTO IPUBOIUT, BOOOIIE TOBOPS, K YMEHb-
[IEHUIO BBIYUCIUTEIHHON TPYIOEMKOCTH MOINMUKAINH 10 CPABHEHHUIO ¢ MeTomoM Hbro-
ToHa. Kpowme Toro pacimpsiercst paboToCIocOOHOCT: MOACUCTEMA MOXKET UMETh PEIlIeHe,
KOT/Ia TTOJIHAsA CUCTeMa He coBMmecTHA. DopMysa Ajsd mapaMeTrpa MOJIydeHa U3 YCJIOBUS
MUHUMYMa, TapaboTMIECKON alllIPOKCUMAIINH JjIsl HEBSI3KU BJIOJIb HAIIPABJIEHUSI CITyCKa.
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Bropas momudukarus cBs3aHa ¢ €BKINIOBOM HEBSI3KON CHCTEMBI M UCIIOIB3YeT KOH-
cranTy Jlunmua st marpunbr fkobu. ITomydeHa oreHka CBepxy sl 3TOW HEBI3KU
B (opMe CHIBHO BBIMYKJIONH GyHKIUU. B pe3ymbraTe mocrpoeHa MoauduUKaIms, KOTO-
pasi B orsiname or Metoga HbroToHa 0becredynBaeT HEJOKAJIbHOE YMEHBIIEHNE €BKJIUII0-
BOM HEBSI3KW Ha KaxKjoi urepaimu. JlokazaHna ryiobajbHasi CXOIUMOCTh IO HEBSI3KE JIJIsT
JII000T0 HAYATBHOTO MPUOIMKEHUS CO CKOPOCTHIO T€OMETPUIECKON TPOTrPECCUN.

KuroueBble ciioBa: HeMHEHasl CUCTeMa ypaBHeHuit, meTos HeploToHa ¢ mapamMer-
pPoM, MO UKAIUH.
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