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Abstract. The theory of linear difference equations is applied in various areas of ma-
thematics and in the one-dimensional case is quite established. For n > 1, the situation
is much more difficult and even for the constant coefficients a general description of the
space of solutions of a difference equation is not available.

In the combinatorial analysis, difference equations combined with the method of
generating functions produce a powerful tool for investigation of enumeration problems.
Another instance when difference equations appear is the discretization of differential
equations. In particular, the discretization of the Cauchy—Riemann equation led to the
creation of the theory of discrete analytic functions which found applications in the theory
of Riemann surfaces and the combinatorial analysis. The methods of discretization of a
differential problem are an important part of the theory of difference schemes and also
lead to difference equations. The existence and uniqueness of a solution is one of the
main questions in the theory of difference schemes.

Another important question is the stability of a difference equation. For n = 1
and constant coefficients the stability is investigated in the framework of the theory of
discrete dynamical systems and is completely defined by the roots of the characteristic
polynomial, namely: they all lie in the unit disk.

In the present work, we give two easily verified sufficient conditions on the coefficients
of a difference operator which guarantee the correctness of a Cauchy problem.

Keywords: polynomial difference operator, Cauchy problem, correctness.

* The research of the first author was supported by RFBR grant no. 18-31-00232.
The research of the second author was supported by REBR grant no. 18-51-41011 Uzb_t.



4 M. S. APANOVICH, E. K. LEINARTAS

1. Introduction

The asymptotic behavior of solutions of a difference equation is studied
in the framework of the theory of discrete dynamical systems and one of the
important notions then is the stability of the system. There are several def-
initions of stability, but in the case of constant coefficients everything bowls
down to the question if the zeros of the characteristic polynomial belong to
the unit disk of the complex plane. When it comes to the multi-dimensional
case, already the question on the form of additional (jjboundary;;, jjini-
tialj ;) conditions for a solution of a difference equation which guarantee its
existence and uniqueness is not trivial (cf., e.g., [2;3;5-7;18]). The difficul-
ties of the formulation of the multi-dimensional version of the condition on
the set of zeros of the characteristic polynomial guaranteeing the stability
are explained, first of all, by the fact that this set is not discrete. It is an
algebraic hyper-surface in the n—dimensional complex space.

A way to overcome these difficulties in the works [4;10; 13] is based
on the observation that the discrete Fourier transforms of some special
solutions of a difference equation are rational functions with poles laying in
the characteristic set of the difference equation. Some particular instances
of such special solutions are: impulsive response in the theory of digital
recursive filters (see., [1]), difference Green function of two-layered differ-
ence scheme with constant coefficients (see [10]), fundamental solution of
a Cauchy problem for a polynomial difference operator [4]. In the present
work, we consider the situation when the discrete Fourier transform of
the fundamental solution of a difference equation is not a rational function.
Such kind of problems arise, for example, in the theory of difference schemes
in the case of implicit schemes. We investigate in this situation conditions
of correctness for a Cauchy problem using the method of estimation of the
norm of the inverse matrix [16;19].

2. Statement of the problem

For a complex-valued function f(x) of integer variables z = (z1, ..., xy)
define the shift operators d; in the variables x;:

(5]f(ac) = f(acl, s Ljmly ey Tj 1, Tjtlseeey wn)
and consider the polynomial difference operator of the order m
P(8)= ) cad®,
la|<m

where a = (o, ..., ) is a multi-index, |a| = ag + ... + oy, 04 = 671...097,
cq are the constant coefficients of the difference operator. The relation of
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ON CORRECTNESS OF CAUCHY PROBLEM 5

the form

P(0)f(z) = g(x), = €77, (2.1)
is called a difference equation, where f(z) is the unknown function, and
g(z) is a function defined on 7%} = 7 x ... x Z4 and Z, is the set of
non-negative integers.

Conditions guaranteeing the existence and uniqueness of a solution can
be stated in various ways (cf., e.g., [2;18]). In the present work, we define
them as follows [5;7].

For two points z, y of the integer lattice Z" the inequality = > y means
that x; > y; for i = 1,...,n, and the notation z # y means that there exists
io € {1,...,n} such that z;, < y;,. Fix a multi-index 3 such that

18] = m and c5 # 0, (+)

denote Xo g = {z € Z", :  # B} and state the problem:
find a solution f(x) of Eq. (2.1) which for x € Xop coincides with a
given function p(x), i.e. satisfies the condition

f(@) = ¢(x), 2 € Xop. (2.2)

If 8= (m,0,..,0) or B8 =(0,..,0,m), then, from the point of view of
the theory of difference schemes, we have an explisit difference scheme (cf.,
e.g., [9]). In this case, the solvability and uniqueness of Problem (2.1)—(2.2)
are evident.

For other 8 such that |5| = m it may happen that the solution is not
unique or the problem does not have solutions. Consider, for example,
Problem (2.1)—(2.2) for the difference equation (67 — 0162 + 63) f(z,y) =
g(x,y). As B we choose = (1,1), take g(z,y) = 0 and ”initial” data
f(0,k) = f(k,0) =0, k=0,1,..., then for any constant T" the function

T7 if (‘Tay) = (Gk - 5,3]7_ 1) or (.%',y) = (6k _473[)_ 2)7

for k,p=1,2,...,
for k,p=1,2,...,

0, for other points (z,y)

is a solution of Problem (2.1)—(2.2). Since T can be arbitrary, this means
that the solution is not unique.

If we take g(z,y) = 1 with the same initial data, then substituting the
values (z,y) equal (1,0) and (0, 1) to the equation we obtain contradictory
equalities f(2,1) — f(1,2) = 1 and f(2,1) — f(1,2) = —1, i.e. Problem
(2.1)—(2.2) does not have solutions.

Therefore, the question on conditions for the coefficients ¢, of the dif-
ference operator P(d) which guarantee the existence and uniqueness of a
solution to Problem (2.1)—(2.2) arises.
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We call Problem (2.1)—(2.2) the Cauchy problem for the polynomial
difference operator P(d), and the function ¢(x) the initial data for this
problem.

For a function f: 7% — C denote || f||,, = sup|f (z)|.

Z’VL

T

We say (cf., e.g., [8], [10]) that a problem of the form (2.1)-(2.2) for
the polynomial difference operator P(8) is correctly stated, if the following
conditions hold:

a) the problem is uniquely solvable, i.e. for any initial data p(x) and
right-hand sides g(x) there exists a unique solution;

b) there exists a constant M > 0 such that for any ¢(z) and g(x) the
following estimate is valid for the norm of the corresponding solution

If (@)oo < M (llg(@) ]l + ()l o) - (2:3)

Note that when the condition (2.3) is satisfied the difference operator
P(9) is called stable.

Thus, the difference problem (2.1)—(2.2) is correctly stated, if it is solv-
able and stable for any initial data p(x) and right-hand sides g(z).

Note that the condition

lesl > D leal (2.4)
jol=IBl.08

is sufficient (see [5], [7]) for the solvability of Problem (2.1)—(2.2). Its form
is suggested by the work [11], where it was used to prove the solvability of a
version of generalized Cauchy problem for a polynomial difference operator
P(D) with initial-boundary conditions of the Riquier type in the class of
analytic functions. The coefficients of the power series expansion of the
analytic solutions of this problem satisfy relations of the form (2.1)-(2.2).
For the polynomial difference operator P(d1,d2) = —d% + 30102 — 65 —
1, the initial data ©(0, z2) = 1 and ¢(x1, 0) = 1, the right-hand side
0, xr1 + T2 :2k—|-1,
g(z1,29) =< 3, 1 = x9, a solution of Problem (2.1)-(2.2)
1, 1 4+ 29 = 2k, 1 # x9,

is the function f(zy,x2) = 1 .$1 taoy =2k 41 Thus, for
min(zy,z2) + 1, x1 + x9 = 2k.
bounded initial data and right-hand side we obtain an unbounded solution,
i.e. the condition (2.4) ensures the solvability of Problem (2.1)-(2.2), but
the stability is absent in this case.
For n = 1 the polynomial difference operator has the form P (§) =
cg0P + c5_10°71 + ... + co and the solvability condition (2.4) means that

B-1
cg # 0. Note that the condition |cg| > > |cq| is sufficient for the stability,
a=0

WzBecTusi IpKyTCKOro rocyZjapCTBEHHOI'O yHUBEPCHUTETA.
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ON CORRECTNESS OF CAUCHY PROBLEM 7

as from this inequality it follows, in view of Rouché’s theorem (see [14]),
that all the roots of the characteristic polynomial P(z) are located inside
the unit disk. We give an analogue of this condition for n > 1.

Theorem 1. Let the coefficients of the polynomial difference operator
P(§) = > cad” satisfy the condition (*) and the inequality

llelsm

|ca| > Z |cal, (2.5)
a7 B

then Problem (2.1)—-(2.2) is correct.

Remark 1. Note that in the work [17] the statement of Theorem 1 is

proved in the two-dimensional case, and the difference operator, in contrast
m k L.

with the present work, has the form P(d1,4d2) = %%cijéiéé. In addition,
j=0i=

the initial conditions for it are different from the conditions (2.2).

The geometric interpretation of the condition (2.5) in the theorem is as
follows: the points of intersection of the characteristic set

V={2eC": P(z) =0}

of the difference equation (2.1) with the complex line z; =t, j =1, .., n
lie in the unit semi-disk U ={x e C": |z;| <1, j=1, .., n}
In fact, consider the restriction of the characteristic polynomial P(z) =
Y. cqz® to the complex line z; =t,j =1, ..., n, t € C:

lal<| 8]
. £l
Pit)=P(t, ..t)= > cat™ =" D cath
o< 8] k=0 \la|=k
From the condition (2.5) it follows, first, that the coefficient > ¢,

laf=|B]
under the highest degree || of the polynomial P(¢) is not equal to zero,
as otherwise we would have the inequality |cg| < Zla\ilﬁ\ ap |Cal. Second,
the following inequalities are true

1811
|3 o Zlesl= > eal 2 30 D el
|or|=|B] lo|=|8],a#8 k=0 |a|=k

from which, in view of Rouché’s theorem, we infer that all the roots of the
polynomial P(t) lie inside the unit disk.

In the case of real coefficients of the difference operator P(d), a sufficient
condition for stability is also provided by the following theorem.
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Theorem 2. Let the coefficients c., of the polynomial difference operator
P(9) be real and satisfy the conditions:

1) cg >0 and co <0 for all o # 3,

2) for some point X\ = (A1, ..., Ap) such that 0 < A\; <1, j =1, ..., n the
inequality P(X) > 0 is valid,

then Problem (2.1)—-(2.2) is correct.

Note that for the difference operator
P((51,52) = —25% + 40109 — 25% —1

the condition (2.5) is not satisfied, but the conditions of Theorem 2 are
valid, and Problem (2.1)—(2.2) is correct.

3. Proofs of Theorems 1 and 2

The proof of solvability for Problem (2.1)—(2.2) in Theorems 1 and 2
is based on the fact (see [5], [7]) that we consider Egs. (2.1)-(2.2) as an
infinite system of linear equations with an infinite number of unknowns
f(y), y € Z7. After the ordering, it will assume a specific form, namely:
each equation of the system will have only a finite number of unknowns.
Such a system is consistent if any finite number of equations from this
system is consistent (see [12], Lemma 6.3.7). We construct the sequence of
sub-systems of the system (2.1)—(2.2) which consist of a finite number of
equations and each sub-system contains all the equations of the antecedent
sub-system. The consistency of each sub-system from this sequence implies
that any finite number of equations from (2.1)—(2.2) is consistent as well.

We order the set 7'} in the uniformly lexicographical way. Take an

arbitrary p € Z4 and construct a sub-system of the system (2.1)—(2.2) of
the dimension N, x Np, where N, = (n%}f’!)! is the number of elements of
the set J, = {y € Z% : |y| < p}. We will "number” the unknowns f(y)
by elements of the set J,. We "number” the equations by elements of two
sets I, = {x € Z% : |z| < p—m} and Ig, = {p € Xopg : |u| < p}. If
we denote by #M the number of elements of a finite set M, then it is not
difficult to see that #1, + #1g, = #J,, in addition we have I, 11z, = J,.
Since Iz, U{B + I} = Jp, we assign to elements of the set Iz, the same
"numbers” with which they belong to the set J,, and to elements z of the
set I, the "numbers” with which 3 + x belong to J,.

Consider a system of equations with a finite number of ordered unknowns

f(y), y € J, of the form
Z caf(@+a)=g(x), z €I, (3.1)
loo|<m

UzBectusi IpKyTCKOro rocyjapCTBEHHOI'O yHUBEPCHUTETA.
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flp) = o), p € Ig,. (3.2)

Denote by A, the matrices of the system of equations (3.1)-(3.2) and
by detA, their determinants.

Example 1. For n = 2, consider the difference operator
P(81,89) = c2,00% + ¢1,10102 + c0.203 + 1,001 + ¢0.102 + Co.0,

where m = 2, 5 = (1,1). For p = 2 the system of equations (3.1)—(3.2) will
have the form

co0f(x+2,y) e f(r+1Ly+1)+cf(z,y+2)+

+Cl,0f($ + 1ay) + CO,lf(x’y + 1) + CO,Of(x’y) = g(x’y)a (33)
(x’y) € I2’
f(z,y) = p(z,y), (z,y)€ T2 (3.4)

It has six unknowns f(y1, y2), (y1, y2) € J2 = {(0, 0), (1, 0), (0, 1),
,0), (1,1), (0,2)}. Egs. (3.3) are numbered by elements of the set I =
0,0), (1,0) (0,1)} and Egs. (3.4) by elements of the set

I(l,l),2 = {(an)a (1,0), (0’ 1)}

Since the union IoUI(y 1) is disjoint, the points with the coordinates (z, y)
and (z, y) are considered to be different.
The determinant of the system of equations (3.3)—(3.4) has the form

(2
{(

1 0 0 0 0 0

0 1 0 0 0 0

detAy — 0 0 1 0 0 0
0 0 0 1 0 0
¢o0 €10 C,1 €20 C1,1 Cp2

0 0 0 0 0 1

n
Let [|Al|, = max )’ |ai;| be the maximum-norm of a matrix A and de-
b

note (see [16], [19]) by R;(A) = |aii| — >_ |aijl, i = 1, 2, ...n, the magnitude
J#i
of diagonal dominance in each row, also we set R.(A) = 177<12'<11 R;(A). If
<i<n
R.(A) >0, then A is a diagonally dominant matrix.

Proof of Theorem 1. Under assumptions of Theorem 1, the main diago-
nal of the determinants det A, of the matrices A, of the system of equations
(3.1)-(3.2) contains units and an allocated coefficient cs. If the condition
(2.5) is fulfilled, for any p € Z the magnitudes of diagonal dominance in
the rows with "numbers” p € I3, are equal to R, (A,) = 1 and in the
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rows with "numbers” x € I, are equal to R, (Ap) = |cg| — > |cal. These
ot f

magnitudes do not depend on p. Therefore,

R.(Ap) =minQ 1, |cgl = > leal p # 0 =R,
a#B

where R, does not depend on p. Since A, are diagonally dominant matrices,
we see that detA, # 0 for any p and Problem (2.1)-(2.2) has a unique
solution.

To prove the stability, we need an estimate for the norm of the matrices
Ay ! which are inverses for the matrices A4, of the sub-systems (3.1)—(3.2).
For the diagonally dominant matrices A, the following estimate is valid
(see [16], [19])

1
-1

Consider the vector f,, with the coordinates f(y), y € J, and the vector
h, with the coordinates g(z), ¢(u), where x € I,, p € Igyp, ||hpll, <
lg(2)]l + lle(z)||,, for all p. We write the systems (3.1)-(3.2) in the form
Apfp = hy, where detA, # 0, and find f, = A; 'h,. Taking into account
(3.5) we estimate the norm f,:

1olloo = 145" Pull. < 11457 [ UMl < 7
<M (l9()lloo + @) lo0)

where M = R% Since the last inequality is valid for any p, we have || f||, <
M (|lg(x)|| o + [l¢(2)]| ) and, consequently, Problem (2.1)—(2.2) is stable.

hplloe <

O

Proof of Theorem 2. One can directly verify that f(z) is a solution of
Problem (2.1)-(2.2) if and only if f(z) = @) )\ = (A1, oy An), A 0,

T )
j =1, .., nis asolution of the problem
Z ca N f(z + ) = §(x), © € 77, (3.6)
|a)]<m
f(a) = @(x), = € Xog, (3.7)
where g(x) = %, o(z) = %.

The sequence of sub-systems of the infinite system of equations (3.6)—
(3.7) constructed as in Theorem 1 for p € Z has the form

Y X flz+a)=§x), €1, (3.8)
|a|l<m

WzBecTusi IpkyTCKOro rocyZjapCTBEHHOI'O yHUBEPCHUTETA.
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F) = @), p € Inp. (3.9)
The magnitudes of diagonal dominance of the matrices flp of the system

(3.8)(3.9) in the rows with "numbers” p € Ig ), are equal to R, <Ap> =1

and in the rows with "numbers” x € I, are equal to

R, (Ap) = |egAP| - O;\caw = cs\P + gﬁ:ﬁcaw —P(\) >0

Hence, R, (flp) =min{l, P (\)} = Ry # 0 and R, does not depend on p,

A, are diagonally dominant matrices. Similarly to the proof of Theorem 1,
this implies that Problem (2.1)—(2.2) is solvable.

To prove the stability of Problem (2.1)—(2.2) we invoke one of the results
of the work [4], namely: the stability of Problem (2.1)—(2.2) is equiva-
lent to the absolute summability of the fundamental solution, i.e. to the
convergence of the series Y [Ps(x)|.

z€L
The solution Pg (z) of Problem (2.1)-(2.2) with the initial data ¢ (x) =0
1, z=0

and the right-hand side g (x) = dg (z) = 0.z 4 0’ is called fundamental.
, T

The stability of Problem (3.6)—(3.7) implies the absolute summability of
the fundamental solution Pg (). Since Pg (x) = 7’§§f), the series > P‘j\iw)
x>0
absolutely converges. In view of Abel’s lemma ( [15]), the absolute conver-
gence of the series ) | Pg (x) z* at a point 20 implies its absolute convergence
x>0
in the polydisk {z: 2| < ‘Z?
theorem we have 0 < A; < 1. Therefore, the series ) Ps (x) z* absolutely
x>0
converges at the point 20 = (A%’ . A—ln), and hence at the point z =
(1, ..., 1). Thus, the fundamental solution Pg(x) of Problem (2.1)-(2.2)
is absolutely summable, which implies the stability of Problem (2.1)—(2.2).

] = 1,...,n}. By the assumption of the

O

4. Conclusion

In the present work, sufficient conditions (Theorems 1 and 2) for the
correctness of a Cauchy problem for a polynomial difference operator with
constant coefficients are proven.

The proof of solvability of the Cauchy problem is based on the property
of diagonal dominance of matrices. The stability of the Cauchy problem is
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proved using the method of estimation of the norm of the inverse matrix.
The assumptions of Theorem 2 do not allow to obtain estimates for the
norm of the inverse matrix. Hence, in Theorem 2 one employs methods of
the discrete Fourier transform of the fundamental solution of the difference
operator.
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O koppekTHOCcTH 3ajaun Konm a1 IMoJIMHOMUAJIBHOTO
PaA3HOCTHOI'O ONepaTopa C MOCTOSTHHbIMU KO3dduIineHTaMu

M. C. AnanoBuu

Kpacroapcruti 2ocydapemsermviii Meduyunckul yhusepcumem um. npo-
geccopa B. @. Botino-Hceneyrozo Munsdpasa Poccuu, Kpachospcrk,
Poccutickas Pedeparyus

E. K. JleitmapTac

Cubupcruti gedepasvhoiti ynusepcumem, Kpacnosapex, Poccutickas De-
depavus

Amnsoranmsi.  Teopusi IuHEHHBIX PA3HOCTHBIX YPaBHEHUIN IPUMEHSIETCS B Pa3JIAY-
HBIX OOJIACTSX MATEMATUKH U B OJHOMEDHOM CJIy9ae MMEET BIIOJIHE 3aBEPITEHHBIA BH/I.
Hust n > 1 cuTyanus 3HAYUTEIBHO CJIOXKHEE M JaXKe I TOCTOSHHBIX KO3(DMOUIINEHTOB
00I1Iero ONMCaHusl IPOCTPAHCTBA PEIIEHUH PA3HOCTHOIO yPABHEHUSI HET.

B koMmOuuaTopHOM aHaan3e PA3HOCTHBIE YPABHEHUS B COYETAHUU C METOJOM ITPOU3-
BOIAIUX (PYHKIUI JAIOT MOIIHBIM alapaT HUCCIeJOBAHUS II€PEYUCIUTEbHBIX 3aa4.
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Jpyroit HCTOYHUK TOSBIEHUST PA3HOCTHBIX yPABHEHUN — MucKperusanusa auddepeHim-
aJbHBIX ypaBHeHuit. Tak, nuckperusanus ypasuenusi Komm — Pumana mpuBesna K co-
3/IAaHUIO0 TEOPHHU IUCKPETHBIX AHAJIUTHIECKAX (DYHKIMIL, KOTOpas HAIIa IPUMEHEHUE
B TEOPUU PUMAHOBBIX MOBEPXHOCTEN M KOMOWHATOPHOM aHajm3e. MeToIbl IUCKpeTn3a-
myu audepeHnnaabHON 33/1a9u SIBJISIOTCS BaYKHOM COCTABHOM YaCThI0O TEOPUHU PA3HOCT-
HBIX CXEM W TaKKe IPUBOAAT K PA3HOCTHBIM ypaBHEHUsSM. Bompoc o cyiiecTBOBaHWM U
€IMHCTBEHHOCTHU PENIeHNsI OTHOCUTCS K YHCJIy OCHOBHBIX B TEOPHU PA3HOCTHBIX CXEM.

JpyruM BaKHEHIITUM BOIIPOCOM SIBJISIETCS BOIPOC 00 YCTOMYIHMBOCTH PA3HOCTHOTO
ypaBHenust. jasg n = 1 1 mOCTOSHHBIX KO3(PDUIIMEHTOB yCTONIUBOCTL UCCJIEyEeTCs B
paMKax TEOPUH AUCKPETHBIX AMHAMHYECKUX CUCTEM U IOJHOCTBIO OIpeJiesIsseTcss KOPHH-
MU XapaKTEePUCTUYECKOI0 MHOI'O4YJIEHA, & UMEHHO: BCE OHU JIEXKAT B €JIMHUYHOM KpYTe.

B nannoit pabore mpuBeIeHBI ABAa MPOCTO MPOBEPSEMBIX JTOCTATOYHBIX YCJIOBHUS HA
KO3 PUIUEHTHI PASHOCTHOI'O OIIEpaTopa, 06ecneYnBaronne KOppeKTHOCTD 3aaadu Kormm.

KuroueBble cjioBa: MOJMHOMUAIBHBIN PA3HOCTHBIN OmepaTop, 3amada Komm, Kop-
PEKTHOCTb.
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