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Abstract. Topological measures and quasi-linear functionals generalize measures and
linear functionals. Deficient topological measures, in turn, generalize topological mea-
sures. In this paper we continue the study of topological measures on locally compact
spaces. For a compact space the existing ways of obtaining topological measures are
(a) a method using super-measures, (b) composition of a g-function with a topological
measure, and (c) a method using deficient topological measures and single points. These
techniques are applicable when a compact space is connected, locally connected, and has
a certain topological characteristic, called “genus”, equal to 0 (intuitively, such spaces
have no holes). We generalize known techniques to the situation where the space is
locally compact, connected, and locally connected, and whose Alexandroff one-point
compactification has genus 0. We define super-measures and g-functions on locally com-
pact spaces. We then obtain methods for generating new topological measures by using
super-measures and also by composing g-functions with deficient topological measures.
We also generalize an existing method and provide a new method that utilizes a point
and a deficient topological measure on a locally compact space. The methods presented
allow one to obtain a large variety of finite and infinite topological measures on spaces
such as R", half-spaces in R™, open balls in R™, and punctured closed balls in R™ with
the relative topology (where n > 2).

Keywords: topological measure, deficient topological measure, solid-set function, super-
measure, g-function.

1. Introduction

This paper belongs to a series of papers devoted to study of topological
measures, deficient topological measures, and their corresponding non-
linear functionals on locally compact spaces. The main focus of this paper is
techniques for generating new topological measures on a locally compact,
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locally connected and connected space whose one-point compactification
has genus 0. Such spaces include R”, half-planes in R™, open balls in R™,
and punctured closed balls in R with the relative topology (n > 2).

The study of topological measures (initially called quasi-measures) and
corresponding quasi-linear functionals began with papers by J. F. Aar-
nes [1-3]. Deficient topological measures were first defined and used by
A. Rustad and ©. Johansen in [10], and later independently rediscovered
by M. Svistula, see [14] and [15]. Application of topological measures
and quasi-linear functionals to symplectic topology has been studied in
numerous papers (beginning with [12]) and a monograph [13]. All this
work is done for compact spaces.

Topological measures, deficient topological measures and some ways to
obtain them when X is locally compact are studied by the author in [7]
and [8]. In this paper we develop analogs on locally compact spaces of tech-
niques that exist for compact spaces with genus 0. These are methods for
generating new topological measures from super-measures, via g-functions,
and by utilizing a deficient topological measure and a point. When X
is compact, the method of super-measures was first developed in [4]; the
method of g-functions first appeared in [5], and was discussed in [10] and [6].
One method that utilizes a deficient topological measure and a point first
appeared in [10].

In this paper X is a locally compact, connected, and locally connected
space. By a component of a set we always mean a connected component.
We denote by E the closure of a set E. A set A C X is called bounded if
A is compact. A set A C X is called solid if A is connected and X \ A has
only unbounded components. We denote by | | a union of disjoint sets.

Several collections of sets are used often. These include: &(X), the
collection of open subsets of X; € (X), the collection of closed subsets of X;
(X)), the collection of compact subsets of X; and &7 (X) = € (X)UO(X).
By J(X) we denote the collection of finite unions of disjoint compact
connected sets. Z?(X) is the power set of X. We use subscripts s or ¢
to indicate (open, compact) sets that are, respectively, solid or connected.
For example, #;(X) is the collection of compact connected subsets of X.
Given any collection & C Z(X), we denote by &* the subcollection of all
bounded sets belonging to &. For example, &(X) = 0*(X) U #(X) is
the collection of bounded open solid and compact solid sets.

Definition 1. Let X be a topological space and i be a set function on &,
a family of subsets of X. We say that p is finite if sup{|u(A)| : A€ &} <
M < oo; p is compact-finite if |uw(K)| < oo for any K € #(X); p is simple
if it assumes only values 0 and 1.

We consider set functions that are not identically oo.
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2. Preliminaries

We will need the following two results (see, for example, section 2 in [7]).

Lemma 1. Let K C U, K € #(X), U € 0(X) in a locally compact,
locally connected space X. If either K or U is connected there exist a
bounded open connected set V' and a compact connected set C such that
KCV CCCU. One may take C =V.

Lemma 2. Let X be a locally compact and locally connected space. Suppose
K CU, Ke #(X), Ue 0(X). Then there exists C € J#y(X) such that
KCCcCU.

The next two lemmas can be found in section 3 of [7].

Lemma 3. If K C U, K € #(X), U € 0%(X) then there exists C €
Hs(X) such that K C C CU.

Lemma 4. Let K CV, K € J#,(X), V € O(X). Then there evists
W e 0*X) such that K CW CW CV.

Definition 2. A topological measure on X is a set function p : €(X) U
O(X) — [0,00] satisfying the following conditions:
(TM1) if A,B,AUB € #(X)UO(X) then un(AU B) = u(A) + p(B);
(TM2) p(U) =sup{p(K) : K € #(X), K CU} forU € 0(X);
(TM3) pu(F) =inf{pw(U) : U € 0(X), F CU} for F € €(X).

Definition 3. A deficient topological measure on a locally compact space
X is a set function v on € (X)UO(X) — [0,00] which is finitely additive
on compact sets, inner compact reqular, and outer reqular, i.e. :
(DTM1) if CNK =0, C,K € #(X) then v(CUK) =v(C)+ v(K);
(DTM2) v(U) =sup{v(C): CCU, Cex(X)} forUe 0(X);
(DTM3) v(F) =inf{v(U): FCU, Uec O0(X)} for Fe€(X).

For a closed set F', v(F) = oo iff v(U) = oo for every open set U
containing F'.

Remark 1. For more information about topological measures and de-
ficient topological measures on locally compact spaces, their properties,
and examples see [7] and [8]. We point out that a deficient topological
measure v is monotone, countably additive on open sets, v(0)) = 0, and v
is superadditive, i.e. if | |,.p A € A, where A;, A € 0(X)U % (X), and at
most one of the closed sets is not compact, then v(A) > >, . v(As).

Remark 2. Let v be a deficient topological measure on X. If X is locally
compact and locally connected then by Lemma 2 for each open set U

v(U) =sup{v(K): KCU, K e #(X)}.
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If X is locally compact, connected, and locally connected, then from Lem-
ma 1

v(X) =sup{v(K): K e #.(X)},

and considering for a compact connected set C' C X its solid hull C e
H5(X),C C C (see section 3 in [7] for detail), we also obtain

v(X)=sup{v(K): K € #;(X)}.

We denote by TM (X) and DT M (X), respectively, the collections of all
topological measures on X, and all deficient topological measures on X. By
M(X) we denote the collection of all Borel measures on X that are inner
regular on open sets and outer regular (restricted to 0(X) U % (X)).

Remark 3. Let X be locally compact. We have:
M(X) S TM(X)S DTM(X). (2.1)

For proper inclusions in (2.1) and criteria for a deficient topological measure
to be a topological measure or a measure in M (X)) see sections 4 and 6 in [8],
and section 9 in [7].

Definition 4. A function X : @7} (X) — [0,00) is a solid set function on
X if

(s1) whenever | | C; CC, C,C; € #5(X), we have Y A(C;) < A(C);
= Z

1= =1

(s2) AMU) =sup{\(K): K CU, K€ #,(X)} forU € 0%(X);
(s3) MK)=inf{A(U): KCU, Ue€ 0X)} for K € #,(X);

(s4) if A= ' Ai A, Ay € /*(X) then A(A) = 30 A(Ay).
=1

Theorem 1, Theorem 2, and Lemma 5 below are proved in [7], section 8.

Theorem 1. Let X be locally compact, connected, locally connected. A
solid set function on X extends uniquely to a compact-finite topological
measure on X . If a solid set function A is extended to a topological measure
W then the following holds: if A is simple, then so is p; if sup{\(K): K €
Hs(X)} = M < oo then p is finite and p(X) = M.

Theorem 2. The restriction \ of a compact-finite topological measure
to o/X(X) is a solid set function, and p is uniquely determined by \.

Remark 4. We will summarize the extension procedure for obtaining a
topological measure p from the a solid set function A. First, for a compact
connected set C' we have: p(C) = MC)—=>_,c; M(B;), where C' = CU| |;; B;
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is a solid hull of C', and {B; : i € I} is the family of bounded components
of X \ C. The set C' is compact solid, and all B; are bounded open solid
sets.

For C € J(X), that is, for a compact set C' which is the union of
finitely many disjoint compact connected sets C, ..., C,, we have: u(C) =
S H(C).

For an open set U we have: u(U) =sup{u(K): K CU, K € J#(X)},
and for a closed set F let pu(F) =inf{u(U): FCU, U e 0(X)}.

Remark 5. When X is compact, a set is called solid if it and its com-
plement are both connected. For a compact space X we define a certain
topological characteristic, genus. See [3] for more information about genus
g of the space. We are particularly interested in spaces with genus 0. A
compact space has genus 0 iff any finite union of disjoint closed solid sets has
a connected complement. Another way to describe the “g = 0” condition
is the following: if the union of two open solid sets in X is the whole space,
their intersection must be connected. (See [9].) Intuitively, X does not have
holes or loops. In the case where X is locally path connected, g = 0 if the
fundamental group 71 (X) is finite (in particular, if X is simply connected).
Knudsen [11] was able to show that if H*(X) = 0 then g(X) = 0, and in
the case of CW-complexes the converse also holds.

Lemmz} 5. Let X be a locally compact space whose one-point compactifi-
cation X has genus 0. If A € o7 (X) then any solid partition of A is the
set A itself.

Remark 6. From Lemma 5 it follows that for any locally compact space
whose one-point compactification has genus 0 the last condition of Defi-
nition 4 holds trivially. This is true, for example, for R”, (R")", an open
ball in R™, or for a punctured closed ball in R™ with the relative topology
(n>2).

Example 1. Let X = R?, [ be a straight line and p a point of X not
on the line I. For A € &/f(X) define pu(A) = 1if ANl # 0 and p € A;
otherwise, let pu(A) = 0. It is easy to verify the first three conditions of
Definition 4. From Remark 6 it follows that p is a solid set function on X.
By Theorem 1 i extends uniquely to a topological measure on X, which we
also call pu. Note that p is simple. We claim that p is not a measure. Let
F be the closed half-plane determined by ! which does not contain p. Then
using Remark 4 we have p(F) = u(X \ F) = 0, and p(X) = 1. Failure of
subadditivity shows that p is not a measure.

Example 2. Let X be a locally compact space whose one-point compact-
ification has genus 0. Let n be a natural number. Let P be the set of
distinct 2n 4 1 points. For each A € &7(X) let v(A) = i/n if §A = 2i or
2i+1, where A is the number of points in AN P. We claim that v is a solid
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set function. By Remark 6 we only need to check the first three conditions
of Definition 4. The first one is easy to see. Using Lemma 3 and Lemma 4
it is easy to verify the next two conditions. The solid set function v extends
to a unique topological measure on X. This topological measure assumes
values 0,1/n,...,1.

3. Super-measures on a locally compact space

If X is compact, one way to obtain a large collection of topological
measures on X is to use super-measures (see [4], for example). In this
section we shall generalize this technique to locally compact spaces.

First, we adapt the definition of a super-measure.

Definition 5. A super-measure on a countable set E is a function v :
P(E) — [0,00] such that v(AU B) > v(A) +v(B) and v(A) < oo for any
finite subsets A and B of E.

Note that a super-measure is a monotone set function.

Theorem 3. Let X be a locally compact, connected, locally connected space
whose one-point compactification has genus 0. Let E be a countable subset
of X such that each bounded subset of X contains finitely many points from
E, and let v be a super-measure on E. Define function p on bounded solid
subsets of X by

p(A) =v(ANE).

Then 1 is a solid set function on X which extends uniquely to a compact-
finite topological measure on X.

Proof. By Remark 6 we only need to check the first three conditions of
Definition 4. Condition (s1) in Definition 4 is satisfied because v is a super-
measure. Lemma 3 and Lemma 4 help to verify conditions (s2) and (s3).
It is easy to see that p is compact-finite. U

Example 3. Let X be R” or R} , and E be the set of points with integer
1
coordinates. Let v(A) = [i‘A N E]] . Here |AN E)| is the cardinality of the

set AN E, and [z] denotes the whole part of a real number. Then v is a
super-measure on F, and by Theorem 3 we obtain the topological measure
won X. Note that p is not a measure as it is not subadditive: it is easy to
see that a compact solid set with positive v-value can be covered by finitely
many solid sets each of which has zero v-value.
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4. Q-functions on a locally compact space

In this section we shall generalize the techniques of g-functions for ob-
taining topological measures on X to the situation where X is locally
compact.

We begin by adapting the definition of a g-function.

Definition 6. A function f :[0,00) — [0,00) is called a g-function if
(i) f is right-continuous

(ii) f(z)+ fly) < f(z +y)
Remark 7. From Definition 6 it follows that
a) f(0)=0

b) f is non-decreasing
c) 2oty fla) < fOCi i)

Definition 7. The split spectrum of a deficient topological measure v is
the set sp(v) = {a € (0,00) : there exist C € #5(X), U € O5(X), CCU
with v(C) =v(U) = a}.

Remark 8. The definition of a split spectrum of a topological measure
on a compact space was first given in [6]. It is easy to see that when X
is compact and v is a topological measure Definition 7 is equivalent to
Definition 3.4 in [6].

Theorem 4. Let X be a locally compact, connected, locally connected space
whose one-point compactification has genus 0, v be a compact-finite defi-
cient topological measure on X and f be a q-function. Define function u on
bounded solid subsets of X by letting u(C) = f(v(C)) for C € #5(X) and
V) = sup{f(1(C): € U, C € A} = F6U)) for U € 07(X)
Then

(I) u = f ov defined as above is a solid set function on X and, hence,
extends uniquely to a topological measure on X, which we also call p.

(IT) f is continuous on the split spectrum of v.

Proof. First note that the second equality in the definition of u(U) holds
because of regularity of v.

(I) By Remark 6 we only need to check the first three conditions of Defi-
nition 4. Suppose that Cy,...Cp,C € H5(X) and C1 U...LC, C C.
v is a deficient topological measure, so by superadditivity of v (see
Remark 1) and the monotonicity of a g-function

n

DG =3 FW(C)) < FQ_v(C) < f((C) = w(C).

i=1
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By the the definition of u(U), we are only left to show that for every
C e H(X)

w(C)=inf{puU): CCU, Ue0:X).

Let C € #5(X), so v(C) < oco. Since f is right-continuous and v is

outer regular, given ¢ > 0 there exist § > 0 and (by Lemma 4) U €
0%(X), C CU such that v(U)—v(C) < d and f(v(U))— f(v(C)) <e.
Since f(v(C)) < f(v(U)") < f(v(U)), we have:

wU) = uw(C) = f(r(U)7) = fw(C)) < f(r(U)) = f(v(C)) <,

which shows property (s3) of Definition 4 for u. Thus, u is a solid set
function.

Let a € sp(v) and C € H#,(X), U € 0%(X) be such that C C U,

v(C) =v(U) = a. Since p is a topological measure, we have:

fla7) = (( )) ( ) Sup{u( ) K e (X)), KCU}

Thus, f(a™) = f(«) and f is continuous at a.

O

Remark 9. (a) By Theorem 1 we may take v to be a solid set function.
(b) In the proof of the first part above we only need f to be right-continuous
at v(U), U € O0%(X).

Example 4. Here are some examples of g-functions and compositions of
g-functions with topological measures. X is a locally compact, connected,
locally connected space whose one-point compactification has genus 0.

(i)

(i)

The easiest one is the function f(x) = z. Then fov = v for any
topological measure v, where topological measure fov is as in Theorem
4.

Let € > 0. Define f : [0,00) — [0,00) by f(z) = 0 for z € [0,¢) and
f(x) = x for x > e. Then f is a ¢g-function. Let m be the Lebesque
measure on R™,n > 2 and p = fom. Then u(A) = 0 for any compact
solid set A with m(A) < e, and for any open solid bounded set with
m(A) < e. Otherwise u(A) = m(A). A closed ball is a compact solid
set. A closed ball B of radius greater than € has u(B) = m(B) > 0
and can be covered by finitely many closed balls B; of radius less than
e with u(B;) = 0. Thus, p is not subadditive and, hence, can not be a
measure.
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(iii) Comsider f : [0,00) — [0,00) defined by f(z) =i for z € [i,i + 1),
where ¢ € N. Then f is a ¢g-function. Let m be the Lebesque measure
on X and pu = fom. Then p is a topological measure that assumes
nonnegative integer values. Note that p is not finite. As in part (ii) it
is easy to show that p is not subadditive and, hence, is not a measure.

Remark 10. The topological measure v in Example 2 can be also ob-

1
tained by a g-function. Let ¢ = —f, where f is the g-function from part
n

(iii)in Example 4. Let m = (01+...02n+1), where §; are point masses

2n+1
at 2n + 1 points which comprise the set P in Example 2. Then v = g o m.

5. DTM and point methods

In this section we will study topological measures obtained by utilizing
a deficient topological measure and a point. We call such methods DTM
and point methods, and they are presented in Theorem 5 and Theorem 6.

Theorem 5. Let X be a locally compact, connected, locally connected
space whose one-point compactification has genus 0. Let v be a deficient
topological measure on X such that v(X) < oo and let p € X be an arbitrary
point. Define a set function vy : /) (X) — [0,00) by

v(A), ifp¢ A
v(X)—v(X\A), ifpeA
Then v, is a solid set function and, hence, extends to a topological measure
on X.

vp(A) =

Proof. To show that v, is a solid set function by Remark 6 we only need to
check the first three conditions of Definition 4. Suppose C7;LUCyU...LUC, C
C. If p ¢ C, the first condition is just the superadditivity of v (see Re-
mark 1). Now assume that p is in one of the sets C1,...,Cy, say, p € C.
Since (X \ C) | |C2|]...[|Cn € X \ C4, by superadditivity of v we have:
v(X\C)+v(C2)+ ... +v(Cy) <v(X\ C1). Then

Up(Cr)+1vp(C2) + ...+ 1(Cp) =v(X) —v(X \C1) +v(Co) + ... +v(C)
< U(X) — ¥(X\ C) = 1,(C)

The case when p € C but p ¢ C; for i = 1,...,n can be proved sim-
ilarly by noticing that (X \ C)|JCi|]...[JCn € X and applying the
superadditivuty of v.

Now we shall show inner and outer regularity conditions (s2) and (s3)
of Definition 4 for v,. Inner and outer regularity is easy to see when a
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solid set does not contain p. So assume that p € C, where C € #(X).
For an open set W = X \ C and € > 0 find compact K C W for which
v(W) —v(K) <e With U= X\ K, we see that C C U and by Lemma 4
there exists V' € 07 (X) such that C CV C U. Then

vp(V) = 1p(C) = v(X\ C) =v(X\ V) =v(W) —v(X\V)
<v(W)—v(X\U)=v(W)—-v(K) <k,

which shows the outer regularity condition (s3) of Definition 4 for v,

Now we will assume p € U, where U € 07(X), and we shall show the
inner regularity. For a closed set F' = X \ U and € > 0 find an open set W
such that FF C W and v(W) — v(F) < e. Since compact X \ W C U, by
Lemma 3 there exists K € J#;(X) such that X \W C K CU and p € K.
Then

vp(U) = 1p(K) = v(X\ K) —v(X\U) =v(X \ K) - v(F)
<v(W)—-v(F) <e,

which shows inner regularity (s2) of Definition 4 for v,. O

Example 5. Let v be the topological measure on X = R? from Example 1,
and let v, be given by Theorem 5 using p from Example 1. Then for
A€ o (X)

0, ifpg A

Let C € #.(X). From Remark 4,

vp(C) = 1,(C) = 3 1y (By). (5.2)

el

where B; are bounded open solid sets and C is a compact solid set.

Ifp e Cthenpe Cbutpé¢ B; foralli € I. Then by (5.1) v,(C) = 1. If
p ¢ C then p may or may not belong to C. If p ¢ C, then p ¢ B; for each i,
and 1,(C) =0. If p¢ C, but p € C, then p is in some component Bj, and
vp(C) = 0. We see that vp(A) =0if p ¢ Aand v,(A) =1ifp e A for A
being compact connected, then a finite disjoint union of compact connected
sets, then open, and then closed, by Remark 4. Thus, v, on &7 (X) is the
point mass dy,.

Example 6. Let X = R?, and let v be a topological measure on X as in
Example 2 for P = {p1, p2, p3, p4, 5}, where p; = (4i—1,0). Fori=1,...,5
let U; be an open disk of radius 3, and let W = U3 UUs U...UUs, U =
U, UU;UU;s. Then Uy,...,Us,U, W are all open bounded solid sets, and
W = UUUy UUs. Taking p to be any point not in W, consider the
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topological measure v, given by Theorem 5. Both v and v, assume values
0,1/2,1. We see that v,(Us) = vp,(Us) = 0,1,(U) = 1/2, and v,(W) = 1.
Thus, v, is not subadditive, hence, it is a topological measure which is not
a measure. This is in contrast to Example 5.

Theorem 6. Let X be a locally compact, locally connected, connected space
whose one-point compactification has genus 0. Let A be a compact-finite
deficient topological measure on X, and let p € X be an arbitrary point.
Define a set function A, : ) (X) — [0,00) by

0, ifpe A
Ap(4) = {)\(A), z’f]];iA

Then X, is a solid set function and, hence, extends to a topological measure
on X. If A is compact-finite but not finite, then so is \p.

Proof. By Remark 6 we only need to check the first three conditions of
Definition 4. The first one is easy to see. We shall show the inner and
outer regularity conditions of Definition 4 for A\,. Let U € €;(X). The
inner regularity is trivial when p ¢ U. Now let p € U. Since A\(U) < oo,
for € > 0 choose C such that p € C C U, A(U) — A(C) < e. By Lemma 3
we may assume that C' € J#;(X). Then

Ap(U) = 2p(C) = AU) = AC) <.
The proof of outer regularity uses Lemma 4 and is similar. O

Example 7. Let X = R", n > 2. The Lebesque measure \ is a compact-
finite deficient topological measure on X, so let A, be a topological measure
on X according to Theorem 6. We claim that A, is not a measure. Since
Ap(X) =sup{\p(K) : K € #,(X)}, taking balls of arbitrarily large radius
we see that \p(X) = co. Now let X be covered by countably many open

o
balls of the same positive radius: X = (J B;. Only finitely many of B;
i=1

oo

contain p, and thus have a positive A, measure. Thus, Y \,(B;) < 0o, so
i=1

Ap is not subadditive and, hence, can not be a measure.
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Crocob6bI IIOJIy4YeHHs TOIIOJIOTUYI€eCKUX Mep Ha JIOKAJbHO
KOMIIAKTHBIX ITPOCTPAaHCTBax

C. B. Bariep

Kanrugoprutickuti ynusepcumem s Canma-Bapbape, Coedurenrvie LlIma-
mot Amepuru

Awnnoranusi.  Tomosormdeckue Mephbl 1 KBA3WJIMHEHHbIE (DYHKITMOHAIBI SIBJISIOTCS
0600IIIeHneM Mep U JUHEHHBIX (PYHKIUOHAIOB. JledeKTHbIe TOMOJIOrMYecKne Mephbl, B

UzBectusi IpkyTCKOro rocyjapCTBEHHOI'O yHUBEPCHUTETA.
2018. T. 25. Cepusa «Maremarukas. C. 33-45
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CBOIO 0Y€pE/ib, SIBJISIOTCS OOODIIEHIEM TOITOJIOrnIecKnX Mep. B 9To0it craTrbe MbI Ipo0J1-
JKaeM HCCJIEIOBAHME TOMOJIOTMYECKUX Mep Ha JIOKAJIBHO KOMITAKTHBIX IIPOCTPAHCTBAX.
Ha xoMnakTHOM NIPOCTPAHCTBE CYIIECTBYIONUE CIOCOOBI IOJIYyUEHUs] TOMOJIOTMYECKUX
Mep — 310 (&) MEeTOJ|, UCHOJB3YIomMil cynep-Mepbl, (6) KoMnosuiws g-pyHKIUU € TO-
IIOJIOTMYECKON MepOit U (B) METOJ € HCHOJIBb30BaHUEM JeeKTHBIX TOIIOJOINIECKUX MEp
U eJIMHUYHBIX TOYEK. DTU CIIOCOOLI MPUMEHUMBI, KO/ KOMIIAKTHOE IIPOCTPAHCTBO $B-
JISIETCST CBSI3HBIM, JIOKAJIbHO CBSI3HBIM, & TaK»Ke UMeeT OMPEIeEHHYIO TOMOJOINYIECKYO
XapaKTEPUCTUKY, KOTOPas HA3bIBAETCA «Pojy», paBHylo 0 (MHTYUTHBHO, y Takux IIpO-
CTPaHCTB HET AbIP). Mbl 06001aeM H3BECTHBIE CIIOCOOLI Ha CJIydail, KOI/ia IIPOCTPAHCTBO
JIOKAJIbHO KOMIIAKTHOE, CBI3HOE, JIOKAJILHO CBS3HOE, W ero KoMmakTudukaius AJjiek-
canapoa umeer pox 0. Mbl jgaém ompesesenue cynep-Mep U ¢-QyHKINA HA JIOKAJIBHO
KOMITAKTHOM ITPOCTPAHCTBE. 3aTeM MbI IIOJIy9aeM METO/(bI TOCTPOEHUsT HOBBIX TOIIOJIOIU-
YEeCKHUX MeEP, UCIOJIb3Ysl Cylep-Mephl, a TaK:Ke KOMIIO3UINK ¢-(PYHKIWH ¢ nedeKTHBIMI
TorosornaeckumMu Mepamu. Mbl Takrke 00600IaeM CymiecTBYIONUI METO M IPHUBOIUM
HOBBII METOJ] C UCITOJIb30BAHNEM TOUYKH U JIePEKTHOMN TOIMOJIOTMYECKOM Mephl Ha JIOKAJIBHO
KOMIIAKTHOM TIPOCTpaHCTBe. lIpejicraBiieHHbIE CIIOCOOBI MO3BOJISIIOT MOJIYYUTh GOJIBIIIOE
KOJINYECTBO PA3HOOOPA3HBIX KOHEYHBIX M OECKOHEUHBIX TOIOJOTUYECKUX Mep Ha TaKUuX
MIPOCTPAHCTBAaX, KaK R™, moJiyipocTpaHcTBa B R™, OTKPBITHIE MAPhl B R™, U MPOKOJIOTHIE
3aMKHYTBIE MIApBI B R™ ¢ MHAYyIMPOBAHHOM Tomosorueit (rae n > 2).

KuroueBbie cjioBa: TOIMOJIOTMYECKHE MEPBI, CONUIA-(DYHKIMH, CYIIepMepPbI, ¢-(DyHK-
LAU.
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