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On the divergence stability loss
of elongated plate in supersonic gas flow
subjected to compressing or extending stresses
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Abstract. Buckling of a thin flexible elongated plate subjected to supersonic flow of a
gas along the Ox-axis and compressed or extended by external boundary stresses at the
edges z = 0 and x = 1 is investigated. This problem is described by a nonlinear ordinary
differential equation in dimensionless variables with two bifurcation parameters one of
which characterizes the compression (extension) of the plate orthogonally to Oy-axis
and the other is the Mach number. Six types of boundary conditions are considered
according to different fixing conditions of the edges © =0 and x = 1. In the case of
unsymmetrical boundary conditions four possible variants of them are considered. The
Lyapounov-Schmidt method of bifurcation theory is applied. In a neighborhood of each
point of bifurcation curve small solutions asymptotics in form of convergent series of two
small parameters are computed. In comparison with our previous results the integral term
is introduced in the nonlinear equation taking into account complementary forces in the
middle surface of the buckled plate. The main difficulties have arisen in the investigation
of relevant two-parametric eigenvalue problems and were overcome with the aid of the
bifurcation curves representation through the roots of the corresponding characteristic
equation.

Keywords: bifurcation theory, boundary value problems, stability.

1. Introduction

The problem of thin flexible elongated plate (strip-plate) buckling in su-
personic gas flow which is compressed or extended by external boundary
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Supersonic gas flow
Compressing (extending) stresses
0 d x

Figure 1. The problem of strip-plate buckling

stresses along the Ox-axis is investigated (see Fig. 1). Six types of boundary
conditions are considered:

A. both edges are hingely fastened, w(0) = 0, w”(0) = 0; w(1) = 0,
w”(1) = 0;

B. the left edge is free, the right one is rigidly fixed, w”(0) = 0, w"’(0) =
0; w(l) =0, w'(1) = 0;

B’. the right edge is free, the left one is rigidly fixed, w(0) = 0, w’(0) = 0;
w”(1) =0, w" (1) = 0;

C. both edges are rigidly fixed, w(0) = 0, w’(0) = 0; w(1) = 0, w'(1) = 0;

D. the left edge is fixed, the right one is rigidly fixed, w’(0) = 0, w"’(0) =
0; w(l) =0, w' (1) = 0;

D’. the right edge is fixed, the left one is rigidly fixed, w(0) = 0, w’(0) = 0;
w'(1) =0, w" (1) = 0.

In dimensionless variables the problem is described by the following
equation

d2 w” de dw

2 "
-— —1 =kK(—,M,k )+

X de ((1 w/2)3/2> d:L'2 <d$ ’ ,/*i) w /0

1

[+ w?)* 1] de,

(1.1)
where K (w),, M,r) = [1—(1+ H%1Mw§c)%] for one-sided flow around and
K(wl,M,k) =1[(1- %Mw;)% - (14 %Mw;)%} for two-sided flow
around by supersonic gas flow along the Ox-axis [1]-[3]. Here w = w(z) is
the plate deflection, 0 <z < 1; 2= 7,0 < 21 < d, —00 < y; < 00 are rect-

. 2
angular coordinates; X2 = MIEW’ T = % and

= pE%CLl; d is the width of the plate, h is its thickness; F is the Young module;
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 is the Poisson coefficient; ¢ < 0 (¢ > 0) is the compressing (extending)
stress; M is the Mach number, pg is the pressure and « is the polytropic
exponent; the integral term takes into account the complementary force in
the middle surface of the buckled plate, § = ﬁ In our previous article
[4] this term was not included in the equation. In the books [1], [2] and in
the article [3] the problem of rectangular plate divergence is investigated,
not subjected to the compression/extension conditions.

For the computation of buckling forms in neighborhoods of parameter
critical values bifurcation theory methods [5] are applied. Everywhere below
the terminology and notations of the monograph [5] are used.

Let F7 and E5 be Banach spaces. The nonlinear equation

Bz = R(z,)), R(0,0) =0, Ry(0,0) =0 (1.2)

is considered. Here B : 4 — FE5 is a closed linear Fredholm operator
(R(B) = R(B), R(B) is the range of B) with dense in E; domain D(B),
N(B) = span{1, ..., pn} isits zero-subspace, N*(B) = span{t1,...,1¥,} C
E; is its defect-subspace. The nonlinear operator R(z, A) is supposed to be
defined and sufficiently smooth by z and A in a neighborhood of (0,0) €
E; + A, A is the parameter space. According to Hahn-Banach theorem
there exist biorthogonal systems {v;}1 € E1, (¢i,7;) = 6;; and {z;}7 € Eo,
n

(2K, Y1) = O, generating the projectors P = Y (-,vj)¢; : E1 — N(B),
j=1

Q= > (,vj)zj : B2 — Ea, = span{zi,...,2,} and the following direct
j=1

sum expansions E; = EJ + EX™", ET = N(B), Ey = Ea, + Es oo—n,

E3 oo—n = R(B). Then the Lyapounov-Schmidt method [5] allows to reduce

the problem (1.2) of construction of small by norm solutions to nonlinear
finite-dimensional equations system that is bifurcation equation. According

~ n
to E. Schmidt lemma the operator B = B + ) (-, vk)zk is continuously
k=1

invertible, and the equation (1.2) can be rewritten in the form of the system

Bx = R(z,\) + iﬁizu &= (z,v), i=1,n. (1.3)
i=1

On the implicit operators theorem the first equation (1.3) has a unique
solution z = x(&, \). Its substitution in the second one gives the bifurcation
equation (BEq)

fE,N) =6 — (@& N,y =0, i=1,...,n. (1.4)

The system (1.4) relative to vector & = (&1,...,&,) is equivalent to the
equation (1.2) in Banach spaces [5] in the sense that the equations (1.2)
and (1.4) have the same number of small solutions. They are represented
in the form of series on equal fractional degrees of parameters.
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In this article the Lyapounov-Schmidt method is applied to the nonlinear
equation (1.1) in neighborhoods of parameters T' and M critical values (in
the points of bifurcation curves). Here the nonlinear operator R is analytic,
small solutions of (1.1) are presented in the form of convergent series of
two small parameters in a small neighborhood of the bifurcation point.
Naturally, the most difficulties arise in the investigation of the relevant
linearized problems (according to the boundary conditions A-D’, see Fig.
1-18).

The obtained results are enclosed in our grant application to RFBR,
project 07-01-00197.

2. Computation of Bifurcational Solutions

The linearized equation (1.1)
'l = Tw® +owd) =0, o =1(2)kxM (2.1)

and six types of the boundary conditions are two-parametric spectral prob-
lems, i. e. spectral two-point boundary value problems. Here the factor
1(2) in the parameter o corresponds to one-sided (two-sided) flow around
of strip-plate by supersonic gas flow.

At the investigation of these two-point boundary value problems the
following possibilities arise 1) 473 — 2702x? > 0, 2) 41° — 270%x? = 0,
3) 4T3 — 270%x? < 0, where 0 > 0, T < 0 is the compressing stress, 7' > 0
is the extension stress, T = 0 corresponds only to flow around.

In the first case T is necessarily greater then 0. The characteristic equa-
tion

foQ) =M =TX2+0X=0 (2.2)
has one negative root —« and two positive roots B3 > 31 > 0 (o = 51 + (2).
Again T is greater than 0 for 473 — 2702x? = 0 and (2.2) has two equal

roots B1 = P2 = B > 0 and one negative root —a. It will be useful to
indicate here some relations between roots #2 > 1 and parameters ¢ and

T
B =P+ 1/2 (VT8 +3T - 33877,

which follow from the known Vieta formulae. In the third case which is
possible at both extension (7" > 0) and compression (T" < 0) of the plate
the roots of (2.2) are v+ di (7,0 > 0) and —a < 0 (v = 2v). Here
for the buckling investigation it is convenient to introduce the following

3o
T<ﬁ1”82<2T

designations 6 = yu, u = /3 — #, o =272(v? 4+ 0%) = 2932 (1 + u?).
It is not difficult to see that the values

0<u<V3=2v2 <o <83y (2.3)
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respond to the plate extension, and the values
u>V3=0>8yx2 (2.4)

respond to the plate compression. The value v = /3 implies T = 0, i.e.
the extension/compression absence. The value u = 0 corresponds to 473 —
270%x% = 0.

Note, that in the investigation of algebraic equation (2.2) with two
parameters 1" and o Sturm method for roots separation was used.

Asymptotics of bifurcating solutions (buckling forms) on small parame-
ters 1,69, T = To+¢e1, M = My+es, in bifurcation point (T, My) are com-
puted for all cases of bifurcation curves existence. Linearized in bifurcation
point equation determines the Fredholm operator B : C4t%[0,1] — C%[0,1]
with one-dimensional zero-subspace N(B) = span{¢(z)} and defect-sub-
space N*(B) = span{t(x)}. For one-sided flow around the asymptotics of
bifurcating solutions takes the form

1 1
Lijpe1 + Lygi €2

X(z) = - () + o([e]),

L200

and for two-sided flow around it is

L2 €1—|-L2 £9
X(x)zi\/— 0 72 = () + O(Je)),
300

where signs of 1, €2 are determined by the radicand nonnegativity con-
straint. Bifurcation equation coefficients are computed according to [5] by
Nekrasov-Nazarov indeterminate coefficients method

1 1
Lho :/0 ‘PNQ/)dﬂC’ L%m = _lm/o 90,¢d337

kr(k +1)MZ 1
L%oo——(zl)o/o ¢ pdr, ...

for one-sided flow around, or

(2.5)

110 = / 80”1/1de = Lnoa L101 27‘“/ ¥ wdl“ = 2L1017 L 200 =0,

1 3
L3y = 3X2/ " pdr + X / oW % hda + 92 / o' o" " pdx
0
1 3 ! 3 12 "
— —kk(k+1)My | ¢"Ydx + 79 go dx gp Yda, ...
6 0 2 Jo 0
(2.6)

for two-sided flow around. By virtue of the limited size of the article the
values of the BEq coefficients L will be given everywhere below only if they
have sufficiently compact form. These coefficients were computed by the
usage of Maple 9.
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More interesting cases B, B’ and D, D’ which have more degrees of
freedom at the edge x = 0 of the plate and are similar from computational
point of view will be investigated first.

2.1. BounNnDARY CONDITIONS B

1) If 4T3 — 270%x% > 0 = T > 0, then using the boundary conditions we
obtain the equation

Ap = Ba(B1 + B2)(Br + 2B2)e™ — B1(B1 + B2) (B2 + 261)e” +
+ B1Ba (B2 — Br)e” Bt = ¢

which defines possible bifurcation points. Here the symbol A denotes the
determinant of the boundary conditions system matrix. Computational ex-
periment shows that due to exponential decreasing of the third summand
this equation implicitly defines the unique curve in the region By > 31 only
if 51 < Bp where By ~ 1.336358362. (See Fig. 2).

a)

DeltaB

b

)
31

beta2 2

1
4 T
N S I T

2
betal

Figure 2. Boundary conditions B, 4T% — 270%x? > 0. (a) The 3D plot of Ag. (b) The
plot of Ap = 0 solution

In this case
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o= ﬁ%ﬁg(ﬁl?_/@l) [(ﬂl + B2) =53 (51 + 262)e™" + 51 (261 + )™}
+ B2B2(By — By)e” PrBzy

+ (B1 + B2) (81 + 282) (261 + Bo){ B2 — BfeBZ}},

- 52iﬁ1 [5182(281 + Ba)e ™" =% — 31858y + 2B5)e =

— (81 + B2){B2(B1 + 282)e ™ — B1(261 + Bo)e M JelrHAr]

()

(2.7)
Here it should be taken into account the relation Ag = 0. BEq coeffi-
cients are as follows

; (51 + )%~ 20%

Lo = (261 + B2)(B1 + 2B2) (=2 + B1)3
: {ﬁz(—ﬁz + B1)(B1 + Ba) (Br + 2Ba)3e* 1252

+ B1(=B2 + B1)(B1 + (2) (261 + B)3etP2 125
— (=B 4 B1) (281 + B2)(B1 + 2B2)(B1 + B2) (BT + 431 B2 + 3)e371 #3052
— B1(Br + 202) (261 + B2) (285 — 265 + 46185 — 118185 — 35133
— 80182 — 567 B2 + 307 + 201)e™ T2 + 8581 + 252) (261 + 2) (26
+ 305 — 50195 — 86185 — 36105 — 116702 + 45782 + 26 — 237)
x 240 436,01 (B1 + B2)(—a + B1)°),
k(B + Bo)e2P1=202
 B1Ba(Br +262) (281 + B2)(—B2 + )3
X [B3(= 2 + Br) (B + B2)2(B1 + 2) e 2
+ BE(= P2+ B1)(B1 + B2)(261 + B2)3etF2 201
— 36182(— B2 + 1) (81 + 262) (261 + Ba2) (81 + ) > 1572
+ BE(B1 + 262) (281 + B2) (631 B2 — ABT + 353 B2 + 35383 + 135333
— 603705 — 36105 + 176195 + 763)e” 2% + 55(281 + Ba2) (B1 + 232)
X (30182 — T — 17072 + 66755 — 36185 — 135735 — 68185 — 3015
+403)e*1 02 — 3828261 + B2)(— B2 + 51)3} ;

L2, is omitted

1
L101 -

for one-sided flow around, and

2 _ 71 2 o7l 2 . .
Livo = Li1gs  Lior = 2Lyp1, L3 is omitted
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for two-sided flow around.
2)If 4T3 — 270%x? = 0 = T > 0, the equation
Ap=e3P4+8-65=0

defines only one bifurcation point § &~ 1.336358362 which naturally coin-
cides with the critical value fy in the previous case. (See Fig. 3).

DeltaB

0] 05 1 \ 2
2] beta
41

Figure 8. Boundary conditions B, 472 — 2706%x? = 0. The plot of Ap

Here
o(z) = e 2% 4 4e7% (362 — 7) +18¢°(2 — j3),
Y(z) = 27766 —8) — e P¥(30z — 36+ 1)

may be computed both directly with the aid of the boundary conditions
and by means of limit passage at Jo — (1 = [ for the case 1) when ¢ (x)
gains the additional cofactor 3%e~” or also at § — 0 (u — 0) for the case 3)
with cofactor (—1) for ¢(x).

BEq coefficients have the form

2
Lhozg

P
Ll =— 3 e [(—63ﬁ2+ 1055+933—78)e%7— 2+ (— 1083+ 80+ 3652)&%} e 38

B(~126-36+1862+98%)e* +4-+ (= 728432 + 365%)e% |77,

1
Liy = T kr(k + 1) MZ3 [(540053 — 243003% + 366755 — 18500)e””
+ (—288003 + 96000)e5° + (—984154 — 78732)e™”
+ (~18003 + 1200)e* + 32) e~
for one-sided flow around, and

2 _ 71 2 _ 1
LllO - L1107 LlOl - 2LlOla
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2
L300

for two-sided flow around, where 3 satisfies the equation Ap = 0. According

K. M. PETROV, A. V. TSYGANOV, B. V. LOGINOV

_ m B2 [~kn(n+ 1)
x {(1270080005* — 7535808003% + 16900531203 — 16980311043
+ 644360192)e'? + (20906888943 — 19663317)e™’
+ (—13230000052 4 52920000032 — 5071500008 — 149450000)e””
+ (45937508 — 4746875)e>® — 100000
+ (—2646000005% — 882000003 — 470400000)e%*} M
+ 8133{(1270080005* — 3725568003 + 26756352052
+ 710492163 — 88711168)e'??
+ (885778743 4 220425543)c™’

264600003% — 18522000052 + 3660300003 — 242060000)e””

+(
+ (97387508 + 15465625)e>” + 800000
+ (5292000032 — 1411200008 + 94080000)e6'3}><2] e 8

1
+ 5007 [—e™% 4+ (488 — 16)e ™7 + (726 — 2648 + 260)e*’ — 243

X [9&3 + 1882 + 128 — 68 + (3682 — 728 + 32)e3ﬂ

to formulae (2.5) and (2.6) at the limit passage 82 — (31 = (3 for the case 1)

(6—0

= u — 0 for the case 3)) in the corresponding BEq coefficients all of

them evaluated for 473 — 2762x? = 0 are multiplied by the cofactor f%e=?
(cofactor (—1)). Thus we have here the additional possibility to verify the
performed computations.

3) When 473 — 27522 < 0, that is possible at both extension (7" > 0) and
compression (7" < 0) of the plate we obtain the following equation

Ap = 2(u? — 3) sin(yu) + 8u cos(yu) + u(l + u2>e—3’y -0

which implicitly defines the bifurcation curve. (See Fig. 4).
Here

o()

()

= u(l—iu2)2 {u(1+u2)2672w+4u(u2 — 7)e"” cos(yux)+4(3—5u?)
x €% sin(yux) 4+ 2¢7 (u? 4+ 9){2u cos(yu) + (u? — 1) Sin(vu)}},
= %[{3(1 + u?) sin(uy(z — 1)) + u(1 + u?) cos(uy(z — 1)) }e*

+ {2(u? — 3) sin(yu) + 8u cos(yu) }eQW}
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a)

200
DeltaB100

gamma

Figure 4. Boundary conditions B, 4T% — 270%x? < 0. (a) The 3D plot of Ag. (b) The
plot of Ap = 0 solution

and BEq coefficients have the form
2y
ud(u? +9)
+ ut) cos(2yu) + 24u® + 5du + 2u}e®T 4 1203 (1 + u?)e
— (u? +9)(10yu? + u? — 6yu? — 20u® — 9) sin(yu)
+ (u? + Qu(yut — 24yu* — 12u* — 9v) COS(’}/’UJ)},
2kk
u3(1+ u?)(u?+9)
— 2u(—90u? + 27 + 11u*) cos(2yu) + 60u® + 6u® + 5du}e>?
— 6ud(1+u?)2e 3+ (u? +9) (3uby+ub — 18yu® — 11u* —21yu? +29u>
+ 9)sin(yu) + (u® + 9u(15yu? + 6u? + 67yu? — 26u> — 9v) cos(fyu)},
Il kr(k + 1) Mgy
2007 431+ 9u?) (4 4 u2)(25 + u2) (1 + u?)?
x {(3u8 — 99u* + 145u? — 9) sin(2vu) + 4u(7Tu® — 42u* 4 15)
x cos(2yu) }e¥ — (25 + u?) (1 4+ 9u?){(u* — 2)(1 + u?)(u? + 9)?
x sin(yu) + (—14u8 + 54 — 450u? + 250u*) sin(3yu) + 3u(1 4 u?)
x (u? 4 9)2 cos(yu) + u(u® — 81u' 4 443u* — 243) cos(3yu) }e
+8ud (4 + u?) (1 + 9u®) (1 + u?)Pe ™7 + 2u>(1 + u?) (4 + u?)
+(25+u?) (1+u?)?{ (u? —9) sin(yu) +6u cos(yu) })e ™ — 9u?(—3+u?)
x (u® 4 9)3{(3u — 26u* — 5) sin(yu) + 4u(5u? — 1) cos(’yu)}]

LY, = {402 (=27 + 5u?) sin(2yu) — 2u(27 — 36u?

Lig = [{—2u2(u2 — 8u + 9)(u? + 8u + 9) sin(2yu)

[16u2(4 + u2)(25 + v?)
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for one-sided flow around, and
2 1 2 1 9 . )
LYo = Liyg»  Ligy = 2Lyp1, L3 is omitted

for two-sided flow around. Again the parameters v and  are connected by
the corresponding relation A = 0.
Note also, that Ap written out in the following form

Ap = u[2(u? - 3O | g cos(yu) + (1 + u?)e ]
u
gives us Ap for the case 2) when u — 0.

2.2. BouNDARY CONDITIONS B’

1) If 4T3 — 27022 > 0, then using the boundary conditions we obtain the
following equation

Ap = —Ba(Brt2) (B11282)e ™ 461 (Brt261) (BrtBa)e” 48201 (51—B2)e™ 2.
)

DeltaB’

2
betal

Figure 5. Boundary conditions B’, 4T% — 276%x* > 0. (a) The 3D plot of Ags. (b) The
plot of Ag, = 0 solution

The substitution #; = 2 + € implies

Ap = —(603 + 505¢ 4 Bae?)eP27¢
+ (663 + 1362 + 902¢? + 263)e ™2 4 (52 + Boe?)e?P2te
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whence regrouping the summands as follows
Ap = 683(e™2 — e P27 4 B2¢(13e™2 — pe=27¢)
+ Boe?(9e772 — eP27¢) 426%™ 4 (B2 + [ye?)e?te

it can be seen that A, > 0 in the region 31 > (2 (Apr < 0 for B > ().
Consequently, the divergence is absent.

2) If 4T3 — 2702x? = 0, then A = 1 + (8 + 68)e 3% > 0 (see Fig. 6) and
the divergence is absent.

104

DeltaB’ \

2beta 3 4 5

Figure 6. Boundary conditions B’, 4T3 — 2702x% = 0. The plot of Ap

3) When 473 — 270%x? < 0, then
Ap = 2(3 — u?) sin(yu) + 8ucos(yu) + u(1 + u?)e®".

As for the case B, the transformation of Apg/

Ap = ue® [(2(3 - u2)sin§]u) + 8cos(*yu))e_37 + (1+ uz)}

shows its positivity for small u. For large u and ~ the third summand grows
faster than two first ones (see Fig. 7). Consequently, the divergence is absent
again.

2.3. BoOUNDARY CONDITIONS D
1) If 4T3 — 270%x? > 0 = T > 0, the boundary conditions give
Ap=PB1(B1+282)e™ — B2 (281 +32)e™ + (85 — B )e~ I1H2) =2(} — 83)

+3B162(B1 — B2) + D M{[(2k 1)L 4 G22)(5, 1 2,)
k=1 :

— [(2k + 1)B3F + B3 H2)(2681 + B2) + [(2k + 1) (B1 + B2) !
= (Br+ B2 (B2~ B -
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150
DeltaB’100

>
CSOSSCS,

SO
SOOI <

Figure 7. Boundary conditions B’, 473 — 276%x% > 0. The 3D plot of Ag:.

By direct computations it can be verified that all expressions in braces are

negative for By > (1. Consequently, the divergence of the plate don’t take
place.

/My
[ 2555050
L5800
2520245 %
DeltaD 2500

1
betal

0.5
0 o
b,
31
beta2 2
1
0 ; 3 ‘ Z
betal

Figure 8. Boundary conditions D, 4T7% — 270?x? > 0. (a) The 3D plot of Ap. (b) The
plot of Ap = 0 solution

2) For 4T% — 270%x? = 0 the boundary conditions system determinant is

the following: Ap = 24 33 — 2e735. Since ddA—ﬁD =3+46e~%% and Ap(0) =0,

the equation Ap = 0 has no positive roots (see Fig. 9) and the divergence
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of the plate is absent again.

15+

1
DeltaD

0 ‘ ‘ ‘ ‘ ‘
2 beta 3 5

Figure 9. Boundary conditions D, 47% — 276%x* = 0. The plot of Ap
3) Let now 473 — 270%x? < 0. Then the following equation
Ap = —2ue™3 + 2u cos(yu) + (u* + 3) sin(yu) = 0

arises, which determinates the bifurcation curve (see Fig. 10).

a)
DeltaD
b)
8
6]
gamma |
4
2]
o : : : : ‘
2 4 ,6 8 10

Figure 10. Boundary conditions D, 47% — 270?x? < 0. (a) The 3D plot of Ap. (b) The
plot of Ap = 0 solution
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The basis elements of zero and defect subspaces are

Y= % {ew(u2 + 9) sin(yu) — 2ue™*7® + 2¢7 {u cos(yuz) — 3sin(’yux)}} ,

)= %[e%xﬂu cos(yu) + (u® + 3) sin(yu)} — 2¢77%{3sin(yu(z — 1))
+ w cos(yu(x — 1))}}

The buckling forms are determined by the following BEq coefficients

b
ud(u? +9)
x cos(2yu) — u(u® 4 9)(u® + 3)(1 +u?)}e¥ — 96ue™7
+ (=162 + (=16 + 10)ub + (1927 + 98)u? + (4327 + 54)u?)
x sin(yu) + (2yu’ + (6y + 16)u’ + (=90 + 144)u® + 162yu) cos(’yu)],
k
LYy, = _WZS)) [{u?(u* = 10u? — 27) sin(2yu) + u(Tu’ + 27 + 18?)
x cos(2yu) — 3u(u® + 9)(1 + u?)}e® + 48ude™7
+ (=162 + (=2 + 67)ub + (=10 4 607)u? + (54 + 54)u?)

x sin(yu) 4 ((18y — 4)u’ + (=36 + 1807)u® + 162yu) cos(vu)},

LYy = [{—2u2(14u2 + 3u + 27) sin(2yu) + u(u? + 3)(u? — 3)2

Ll = — i kr(k + 1)My*y
ud(1+ 9u?)(4 + u?)(25 4+ u?)(1 + u?)
x (1 +u?){(3u* — 14u® — 9) sin(2yu) + (16u> + 24u) cos(2yu)}e”
—320%(1 + 9u?) (4 + u?)(25 + ) { (u* + 2u® 4 9) sin(yu) + (4u® + 12u)
x cos(yu) ye 27 4+ 512u3(1 4 9u?) (4 4+ u?) (1 + u?)e ™7 + {(25 + u?)
x (14 9u?)(u? + 2)(u? + 9)2(1 + u?)? sin(yu) — 2(1 + 9u?)(25 4 u?)
x (14 u?)(4ub + 11u* + 18u® + 27) sin(3yu) + (25 + u?) (1 + 9u?)
x (u? 4+ 9)2(1 + u?)? cos(yu) + u(1 + 9u?)(25 + u?)(1 4 u?)
x (u? = 5u 4 5u— 9)(u+ 5u+ 5u+ 9) cos(3yu) et — u?(9ub 4 133u?

[6402(25 + u?) (4 + u?)

+527u? + 115) (u? + 9)° sin(yu) — 180 (u? - 3)(u? + 9)° cos(yu)
for one-sided flow around, and
Lig = Ligs  Lipt = 2Lig1, L3 is omitted

for two-sided flow around. Here the parameters u and v are bound by the
corresponding relation Ap = 0.
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2.4. BOUNDARY CONDITIONS D’

1) If 473 — 27022 > 0, then using the boundary conditions we obtain the
equation

Apr = —[B2(261 + Ba)e ™ + Bi(B1 + 2B2)e™ " — (8] — B3)e T2,
Transforming it as follows

B2 _ 01 (62 — AN\2(B14+B82) _ 32,51 2,02
_ e € 5 — pi)e p3e” + Bie
Apr =26, eBi1+82 t eB1t62

we can see that Aps > 0 for S > (1 (Apr < 0 for By > [2), i. e. the
divergence is absent.

a)
o \‘\\\\
:““\\\N
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b
)
31
beta2 2
1
0 1 3 4

2
betal

Figure 11. Boundary conditions D', 4T% — 275%x* > 0. (a) The 3D plot of Ap/. (b) The
plot of Ap/ = 0 solution

2) If 4T3 — 2702x% = 0, then Ap: = 2+ (38 — 2)e 3% > 0 (see Fig. 12) and
the divergence is absent.
3) When 4T3 — 270%x? < 0, then the equation

Ap = (u? + 3) sin(yu) — 2u cos(yu) + 2ue®

determines the bifurcation curves (see Fig. 13).
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Figure 12. Boundary conditions D', 4T% — 27¢02x? = 0. The plot of Ap,

The basis elements of zero and defect subspaces are
1 —2yx . -3
Y= {u —ue” 7" — {ucos(yu) + 3sin(yu) e
U
+{ucos(yu(e — 1) = 3sin(yu(z — 1))} 0],

Y= % [{u cos(yuz) + 3sin(yuzx)}e " — ueQW].

2)

0°"""'5 10 15 20 25 30

Figure 13. Boundary conditions D', 4T% — 276%x? > 0. (a) The 3D plot of Ap. (b) The

plot of Ap, = 0 solution
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The buckling forms are determined by the following BEq coefficients
ve
2u3(u? +9)
+ {(4y — Db + (21 + 48y)u* 4 (108y — 27)u? — 81} sin(yu)
+ {yu” + (8 + 11y)u’ + (=24 4 277)u® + 81yu} cos(*yu)},
kre=37
2u3(u? +9)
+ {—yub 4+ (=67 — 15)u* + 27yu? — 81} sin(yu)
+ {(57 — 2)u® + (30 + 54y)u® + 81yu} cos('yu)} :

Ll = [{(=87 = 8)u° + (24 — 727)u}e™

Lip = {2+ 47)u” + (=30 + 367)u’}e™

Lo kk(r +1)MEB(u* +9)
200 32u2(1 4 9u?) (4 + u2)(25 + u2) (1 + u?)

X [{(—641] + 2356u° + 5264u> — 6u” + 2850u) sin(26u)

+ (44u® — 900 + 1136u’ + 856u* — 1136u?) cos(26u)
+ 9361u? + 3630u8 4 900 + 352u® 4 11748u* + 9u'®}e =07
+ {—9u!? — 23661’ — 2284u* — 2250 — 316ul}e %’
+ {(5496u® + 18840u> — 24u° + 4320u + 168u") sin(Bu)
+ (208u® — 633612 + 5200u? + 2528u°) cos(Bu) e
+ {(23096u> + 2312u” 4 2400u 4 13720u® + 72u°) sin(Bu)
+ (—144u® — 14864u* — 4192u° — 1600u?) cos(Bu) e’
— 656ut — 736u’ — 1440’ — 64u2}

for one-sided flow around, and

2 _ 71 2 1 2 . .
Lig = L9,  Ligy = 2Lqpy, L3g is omitted

for two-sided flow around. The parameters u and -+ are bound by the
corresponding relation Ap, = 0.

2.5. BOUNDARY CONDITIONS A AND C

The boundary conditions here are symmetric. Then according to [6] for
T = 0 the plate divergence is absent and in dynamic situation the flutter
takes place. However we consider stationary bifurcation and the additional
extension T > 0 for the cases 1) and 2) can’t lead to the plate buckling.
These results can be verified analytically similarly 1) and 2) of subsec-
tion 2.2 expanding the relevant boundary conditions system determinants
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into series

Ax = B5(261 + Ba) cosh B2 — (7 (1 + 202) cosh 31

— (B2 — B1)(B1 + B2)? cosh(B1 + Ba),
Ac = Bi(B1 + 2B2) cosh B1 — Ba(2B1 + Ba) cosh B + (B3 — B7) cosh(B1 + B2),
i.e. by the proof of Ay, Ac # 0 for 35 > (1. More easily it can be checked for

the case 473 — 270%x? = 0, where Ay = 16 cosh 23 — 16 cosh 3 — 33 sinh 3,
Ac = 2cosh28 — 2cosh 8 — 3@ sinh 5.

a)
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Figure 14. Boundary conditions A, 4T% — 276%x? > 0. (a) The 3D plot of Aa. (b) The
plot of As = 0 solution

Let now 473 — 276%x? < 0. It should be noted that the values 0 < u <
V/3 respond to the plate extension, and the values v > v/3 to the plate
compression (see (2.3), (2.4)). The mechanical considerations mentioned
above show the divergence absence for 0 < u < v/3. Therefore the condition
u > v/3 will be investigated further. Note by the way, that here for o = 0
the plate buckling takes place ([1], [2], [7]). The relevant bifurcation curves
are determined by the equations

Ax = (3 — 6u? — u?)sinh(y) sin(yu) — Su(cosh(2y) — cosh(y) cos(vu))( =
2

O’
.8)
Ac = 2u(cosh(27y) — cosh(y) cos(yu)) — (u? + 3) sinh(y) sin(yu) = 0 (2.9)
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Figure 15. Boundary conditions C, 47°% — 27¢%x? > 0. (a) The 3D plot of Ac. (b) The
plot of Ac = 0 solution

(see Figs. 17 and 18).
The bases of zero and defect-subspaces are the following

— — 1 2 2 —2vx ~v(z=3) 2
YA =PA = ey {(u +1)sin(yu)e +4e (2u cos(yux)+(u” — 1)

x sin(yuzx)) — 4e7%((u® — 1) sin(yu(z — 1)) + 2ucos(yu(z — 1)))
+ 8¢7u + e 27((3 — 6u* — u?) sin(yu) — 8u cos(’yu))},

wo = {(u2 + 1) sin(yu)e™ 27 + 2673 {sin(yuz)

- sin(yu)
+ 27 {ucos(yu(r — 1)) —sin(yu(z — 1))} — 2e7u

—wcos(yuz)} — e 2 {sin(yu)(u? + 3) — 2u cos('yu)}]

The denominator sin(yu) is equal to zero only at u = 0, since the other
roots don’t satisfy the equations (2.8), (2.9), i.e. on the bifurcation curves
(2.8), (2.9) sin(yu) # 0.

The BEq coefficients determining the solutions asymptotics have the
forms (where the connections Ay = 0 and A¢c = 0 should be taken into
account)
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Figure 16. Boundary conditions A and C, 4T% — 270%x? = 0. (a) The plot of Aa. (b)
The plot of Ac

A.

y(u? +1)e 67
sin?(yu)
+9)e? + (u® — ut 4 3u? — 27)e57} cos? (yu) — 4u{((—9 — ut — 10u?)e?”
+ %7 (u? — 3)(u? + 3) — 262 (u? — 3)) sin(yu) + 2((—u? + 3)e

+ e (u? + 5) 4 47 + 4e™)u} cos(yu) — 4u{ (9 — ut)e®
+ €7(=3 + ut 4 6u?) + 277 (u? — 3) + 4e™ (u? + 3)} sin(yu)
+ (2u8 + 18u* — 18 4+ 62u?)e? + (—15u* — 39u% — ub — 9)e??

+ (—u® — 3ut + 9u? + 27)e% + 4((u? + 5)e¥ —u? + 3)u2} ,

L, =— [{(—18u* + 18 + 2u? — 2u%)e™ + (u® + 59u? + 19u*

kre Y

Ll = [{(9 = 100 + u® + 120° + 30u")e® + (9 — 100u? + u®

~ 2sin’(yu)
+ 12u® + 30ut)e® — 2¢M7 (u? + 9)(u® 4 1)} cos? (yu) + {16(—3 + u?

+ 6u?)(—e®7 4 %) sin(yu) + 128u(e® + €7 + €37 4+ ™) }u cos(yu)

— 16u(—3 + u* + 6u?)(—e" — 7 + ¥ 4 &) sin(yu) — (-3 + u*

+ 6u?)2e?’ — (=3 + u* + 6u?)2e% + (18 + 24u°® — 20012 + 60u* + 2u®)

x e? — 64u?(1 + egv)},
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Figure 17. Boundary conditions A, 4T% — 270?x? < 0. (a) The 3D plot of Aa. (b) The
plot of A4 = 0 solution

Ly is omitted
for one-sided flow around, and
Ly = Lo, Lio1 = 2Lig1, L3y is omitted

for two-sided flow around,

C.

Y(u?+1)e07
sin? (yu)

x sin(yu) + u(—e> + e37)} cos(yu) + 6u(e3 + e>7) sin(yu)

+u? — ¥u? + 9¢57 — 9e2“/],

Il kre=67
101 —

Lip = [(U—?J) (u43) (—e® +e57) cos? (yu) —2u{ (3¢57 +3e*7)

“aiw) [{(9+ 202 + ut) (e + %) + (—2u' — 20u? — 18)¢™}

x cos?(yu) — 4uf{(u? + 3)(—e*” + %) sin(yu) — 2u(e> + 7 + 37
+ €)Y cos(yu) — du(u® + 3)(—e> — ™ 4 €77 + &) sin(yu) — (u? + 3)?
x (€2 +e%7) + (18 + 2u* + 4u?)e — 4u®(1 + egv)],

Lo is omitted
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Figure 18. Boundary conditions C, 47°% — 27622 < 0. (a) The 3D plot of Ac. (b) The
plot of Ac = 0 solution

for one-sided flow around, and
2 1 2 1 2 . -
LYo = Li1g, Lioy = 2L1g1; Lo is omitted

for two-sided flow around.

3. Conclusions and Future Work

In this article the main terms of solution asymptotics for the nonlinear
problem (1.1) with two bifurcation parameters at the boundary conditions
A-D’ are obtained. The subsequent terms of solution expansions can be
calculated by indeterminate coefficients method.

We have also considered the cases when the left edge is elastically sup-
ported (or elastically turned) and the right edge is rigidly fixed and visa
versa. The other possible cases of fixing the edges = 0 and x = 1 with
the investigation on the presence of the divergence will be also considered.
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K. M. Ilerpos, A. B. llpiranos, 5. B. Jlorunos

O ,ILI/IBepFeHTHOﬁ morepe yCTOﬁ‘IHBOCTH y,ILJ'[I/IHeHHOI.;I IIJIAaCTUHBI
B CBEpPX3BYKOBOM IIOTOKe rasa, C>KMMaeMOM nJIu paCTﬂFI/IBaeMOﬁ
BHEIIITHUMU KpaeBbIMHW YyCUJIUAMU

Amnnoranus. zyyaercs nporub TOHKON IrMOKO# Y/ IMHEHHOM IIJIACTUHBI, 00TeKaeMOit
CBEPX3BYKOBBIM IOTOKOM raza Bob ocu OX M CKUMaeMOM WM PACTSTHBAEMOIl BHEIII-
HUMU KPaeBbIMHU yCUIUsIMU 110 KpasiMm ¢ = 0 u x = 1. 3a/1a4a OnucbIBaeTCsl HEJTMHENHBIM
O/IY B Ge3pa3sMepHBIX MEPEMEHHBIX C JIByMs Ou(dypPKAIMOHHBIMUA MapaMeTPaMU, OJUH
13 KOTOPBIX XapaKTepU3yeT cxkaTue (pPacTs?KEeHUE) ILIACTUHBI TepIeHauKyasapao ocu Oy,
a gapyroit - ynciao Maxa. PaccmarpuBaioTcs mecTb KpaeBbIX YCJIOBHIl COIVIACHO Pa3JIdt-
HBIM crocobam 3akperiennst kKpaeB * = 0 u x = 1. JIjsT HECUMMETPUYHBIX KPAEBBIX
YCJIOBHIl paCCMaTPUBAIOTCS Y€ThIPE BO3MOXKHBIX ciiy4dasi. [l pumensiercsa meron JIanyHoBa-
[IImuara Teopun BeTBIeHUsT. B OKpecTHOCTH KaKI0M TOYKU OUDYPKAIMOHHBIX KPUBBIX
BBIYHUCJISAETCS aCUMITOTHKA MAaJIbIX PEIIEHU B BUJE CXOMAIINXCA PSAJIOB II0 JBYM MaJIbIM
mapaMeTpaM. B oTiimyune OT HAIMUX TPEIBIIYINX PE3YIbTaTOB, B HEJIMHEHOE yPABHEHNE
BBEJIEHO MHTErpPAJIbHOE CJIaraeMoe, yIUTBIBAIOIIEe YCUINS B CPEIUHHON IJIOCKOCTH H30-
rayTOi ractuabl. OCHOBHBIE TPYIHOCTH BO3HUKJIM B MCCJIEIOBAHUN COOTBETCTBYIOIIAX
JBYIAPAMETPUIECKUX CIIEKTPAJIBHBIX 387129 U ObLIN MPEOJIOJIEHBI C TTIOMOIIBIO IIPEJICTAB-
Jenns 6udypKAIMOHHBIX KPUBLIX Yepe3 KOPHU COOTBETCTBYIOIIETO XaPAKTEPUCTIHIECKOTO
yPpaBHEHUSI.





