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1. Introduction

This paper studies a particular type of optimal control problems governed by
an initial value ODE system without phase constraints where all admissible
controls are smooth real functions bounded in amplitude and have their end-
points fixed. Our approach is based on the use of internal perturbations of
the reference admissible control function and provides a verifiable necessary
condition for optimality in the form of the maximum principle. The latter
serves then as a basis for developing of an optimization technique represen-
ted by an iterative algorithm that allows to find an optimal solution among
smooth and bounded functions. By optimal solutions we understand here
the Pontryagin extremals, that is, admissible control functions satisfying the
necessary condition of optimality. It should be noted that the majority of
traditional methods will not cope with this problem since they are destined
to deal only with piece-wise continuous bounded functions; however, feasible
solutions may exist in the class of smooth functions. This approach is
illustrated by two examples.
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OPTIMAL CONTROL IN TERMS OF SMOOTH AND BOUNDED FUNCTIONS 119

2. Problem formulation and preliminaries

Our goal is to minimize the objective functional

J(u) = ϕ(x(t1)) +

∫ t1

t0
F (x, u, t) dt → min (2.1)

subject to the initial-value system of n nonlinear ordinary differential
equations

ẋ = f(x, u, t), x(t0) = x0, x0 ∈ R
n, t ∈ T (2.2)

Here T = [t0, t1] is a specified domain of independent variable t which
characterizes the fixed duration of the dynamic process; x(t) ∈ R

n, is
referred to as state variable vector or as the trajectory of the system (2.2)
and defines the state of the dynamic process at any time t. A smooth real
function u(·) ∈ C1(T ) is called control variable and determines the course
of the action performed over the dynamic process; the domain of u(t) is
T = [t0, t1] and its range U ⊂ R is referred to as the set of admissible
controls.

In this paper we consider a particular structure of the set of admissible
controls U :

α ≤ u(t) ≤ β, t ∈ T (2.3)

where α and β are specified real numbers. All admissible control functions
u(t) must also have their end-point fixed:

u(t0) = u0, u(t1) = u1 (2.4)

where u0, u1 ∈ U are real numbers such that α ≤ u0 ≤ β and α ≤ u1 ≤ β.
A feasible trajectory x(t) ∈ R

n over the time interval T = [t0, t1] is a
profile of ODE system (2.2) calculated for admissible control u(t) satisfying
(2.3)–(2.4). In other words, for each admissible control, the solution to initial
value system (2.2) is uniquely determined and so is a feasible trajectory.

The problem to which this paper is devoted is that of choosing a smooth
and bounded control function u(t) with end-point constraints out of the set
of admissible controls U , which, together with its corresponding feasible
trajectory x(t), minimizes the objective functional (2.1).

A pair {u,x} where u(t) ∈ U ⊂ R and x = x(t, u) ∈ R
n stands for its

feasible trajectory, is usually called admissible process. The control function
u∗(t) on which the objective functional (2.1) attains its minimum, is called
optimal control, and the process {u∗,x∗} is referred to as optimal process.

Preliminarily, for the entries of the problem (2.1)–(2.4) formulated above
it should be stated that:
1. Vector-function f = (f1, . . . , fn) is continuous in (x, u, t) together with

its partial derivatives with respect to x and satisfies Lipschitz condition
in x with the same constant L for all u(t) ∈ U, t ∈ T :

‖f(x+ ∆x, u, t) − f(x, u, t)‖ ≤ L‖∆x‖. (2.5)
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120 O. V. VASILIEVA

2. Scalar functions ϕ and F are continuous in their arguments together
with their partial derivatives with respect to x.

3. Vector function f(x, u, t) and scalar function F (x, u, t) are differentiable
with respect to u.

The above mentioned assumptions are essential for justification of the
maximum principle which will be formulated later as a necessary condition
of optimality for the problem (2.1)–(2.4). It is commonly known that the
maximum principle offers numerical procedures which provide a substantial
decrease of the objective functional at each iteration. The latter is achieved
by perturbing adequately an initial control function with other functions
called variations.

It should be emphasized that the solution to the problem (2.1)–(2.4) is
sought among smooth and bounded real functions, therefore our approach
must differ from the traditional one described, e.g., in the book [1]. Such
a difference will principally consist in the use of unconventional type of
functional variation called interior variation. A detailed overview of different
types of functional variations is presented in [2]. Therefore, we should only
outline here the core features of interior variations.

Traditionally, a variation ∆u(t) from a reference function ū(t) is under-
stood as a small perturbation of this function that creates a new function
u(t) = ū(t) + ∆u(t). Thus, it is clear that ∆u(t) must also be a function
by nature. This is so-called “outer variation” since the time scaling is the
same and the perturbation value for all t is added to the value of ū(t) for
the same t.

On the other hand, one may define an “inner variations” which go along
with a formal representation of the perturbed function u(t) = (ū ◦ γ)(t) =
ū (γ(t)) where ū is the same reference function defined in T = [t0, t1] and
γ : T → T must be some particular smooth real function.

As far back as in 1850s, M.V.Ostrogradski had suggested to supplement
the classic Lagrange variation with a smooth simultaneous perturbation of
independent variable. The earliest reference to the idea of such “simultane-
ous varying” can be found in [3] where the previously mentioned function
γ was defined by

γ(t) = t+ ε · δ(t). (2.6)

Here the second addend represents a kind of lag in the argument t that
looks rather similar to the classic variation of Lagrange. The addend ε · δ(t)
had later received a name of interior variation. This term implies that the
variation is incorporated into the reference function, that is, it is added
to the function’s independent argument, performing that way an “internal
perturbation”.

It should be noted that, using the arbitrariness of function δ together
with value of ε, one may figure out a certain way to represent a neighboring
family uε(t) = u(t+ε·δ(t)) of some bounded reference function u(t) ∈ U, t ∈
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Рис. 1. “Inner” perturbations uε(t) of admissible smooth and bounded function u(t).

T so that the same constraints be valid for all members of such a family, i.e.,
uε(t) ∈ U, t ∈ T. Moreover, if this reference function u(t) is smooth within
T , then by choosing δ(·) ∈ C1(T ) we can guarantee the smoothness of all
uε(t). Consequently, interior variations are potentially capable of preserving
both the smoothness and the boundedness of all perturbed functions uε(t).
The latter is shown on the Figure 1 where uε(t) ∈ U while uε(·) ∈ C1(T ).

The purpose of this paper is to design an optimization algorithm for
solving the problem (2.1)–(2.4) where the sequence of admissible controls
is constructed using internal perturbations of a reference control function
by means of interior variations. Therefore, it is essential to avoid a possible
time lag in (2.6) by choosing adequately δ(·) ∈ C1(T ) and the parameter ε
in order to guarantee the fulfillment of the control constraint (2.3)–(2.4).

In effect, it was proved in [2] that uε(t) = u (t+ ε · δ(t)) will have the
same range as u : T → U ⊂ R for all ε ∈ [0, 1] and for any smooth real
function δ(t) satisfying the condition

δ(t0) = δ(t1) = 0, t0 − t ≤ δ(t) ≤ t1 − t, t ∈ T. (2.7)

In particular, conditions (2.7) are fulfilled for

δ(t) =
(t− t0)(t1 − t)

M(t1 − t0)
g(t), M ≥ max

t∈T
|g(t)| , (2.8)

where g(t), t ∈ T is an arbitrary smooth real function.
The total arbitrariness of g(t) in the formula (2.8) gives us a certain

liberty to choose the parameters (that is, δ(t) and ε ∈ [0, 1]) of internal
perturbation (2.6) in order to achieve a significant decrease of the value of
J(uε) in comparison with J(u). More details on how to do it in practice will
be considered in the Section 4.
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3. Optimality conditions via interior variations

According to Vasiliev [1, p.127], for two admissible processes — the basic one
{u,x = x(t, u)} and the varying one {ũ = u+ ∆u, x̃ = x+ ∆x = x(t, ũ)}
— the formula for the increment of the objective functional (2.1) can be
written as

∆J(u) = J(ũ) − J(u) = −
∫ t1

t0
∆ũH(ψ,x, u, t) dt+ ηũ (3.1)

separating the dominant term (in integral form) from the remainder term ηũ.
Here H(ψ,x, u, t) = 〈ψ(t),f(x, u, t)〉 − F (x, u, t) is the maximal Hamilto-
nian function, 〈· , ·〉 stands for inner product in the finite-dimensional Eucli-
dean space R

n and ∆ũH(ψ,x, u, t) denotes the partial increment of H with
respect to u, that is, ∆ũH(ψ,x, u, t) = H(ψ,x, ũ, t) −H(ψ,x, u, t), while
ψ(t) ∈ R

n is so-called “conjugate” (also referred to as “adjoint”) vector
function that defines the “co-state” of the dynamic process and satisfies the
terminal-value linear ODE system given by

ψ̇ = −∂H(ψ,x, u, t)

∂x
, ψ(t1) = −∂ϕ(x(t1))

∂x
. (3.2)

The same book [1, p.129] provides the following estimate for the state
increment ∆x(t) caused by the control perturbation ∆u(t):

‖∆x(t)‖ ≤ K1

∫ t1

t0
‖∆ũf(x, u, t)‖ dt, (3.3)

K1 = exp[L(t1 − t0)] = const > 0,

where ‖·‖ stands for vector’s norm in the finite-dimensional Euclidean space
R
n and ∆ũf(x, u, t) = f(x, ũ, t) − f(x, u, t) denotes the partial increment

of f with respect to u. The estimate (3.3) was obtained using the Lipschitz
condition (2.5) together with Gronwall-Bellman’s lemma. In [1], Vasiliev
considered the control perturbations in the form of elementary needles (see
more details in [4]) and applied the estimate (3.3) in order to justify that
ηũ ∼ o(ε), using the fact that all perturbed functions are bounded, that is,
ũ(t) ∈ U, t ∈ T. The same argument remains valid if we consider internal
perturbations of the form (2.6) since for adequately chosen δ(t) and ε ∈ [0, 1]
we can guarantee that ũ(t) = uε(t) ∈ U for all t ∈ T . Therefore, it will be
appropriate for our case to write ηũ ∼ o(ε).

Taking into account the third condition formulated in the Section 2

∆ũH(ψ,x, u, t) =
∂H(ψ,x, u, t)

∂u
∆u(t) + o (|∆u|) (3.4)

where ∆u(t) = uε(t) − u(t) = u (t+ ε · δ(t)) − u(t) = ε · u̇(t)δ(t) + o(ε), we
can follow the deductions of Vasiliev [1, pp.129-132] and arrive to

J(uε) − J(u) = −ε
∫ t1

t0
W (u, t) δ(t) dt+ o(ε), ε ∈ [0, 1], (3.5)
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OPTIMAL CONTROL IN TERMS OF SMOOTH AND BOUNDED FUNCTIONS 123

where

W (u, t) =
∂H(ψ,x, u, t)

∂u
u̇(t) (3.6)

is referred to as deviation function. Formula (3.5) is valid for all ε ∈ [0, 1]
and for all δ(t) that satisfying either (2.7) or (2.8).

Теорема 1. (Necessary condition of optimality) Suppose that u∗(t) is
optimal in the problem (2.1)–(2.4) and that x∗(t), ψ∗(t) are the feasible
trajectories of the direct and adjoined systems (2.2) and (3.2), respectively.
Then it holds that

W (u∗, t) = 0, t ∈ T. (3.7)

Proof. The statement of the Theorem 1 becomes evident from the incre-
ment formula (3.5) considered on the optimal control, that is,

J(uε) − J(u∗) = −ε
∫ t1

t0
W (u∗, t) δ(t) dt ≥ 0

for any admissible δ(t) 6≡ 0 that may have opposite signs within T. 2

Замечание 1. Since the necessary condition of optimality (3.7) will
hold trivially if u̇∗(t) = 0, we should not deal with constant control functions.

4. Optimization technique based on interior variations

Traditional optimization techniques for solving optimal control problems
with bounded control domain repose on successive approximations dimini-
shing the value of the objective functional. That is, starting from some
admissible control uk(t) and corresponding solutions xk(t), ψk(t) of the
direct (2.2) and adjoined (3.2) systems, one must define a nominal admis-
sible control ūk(t) that satisfies the necessary condition of optimality (e.g.,
maximum principle or linearized maximum principle) for the same xk(t),
ψk(t) and almost for all t ∈ T :

ūk(t) = arg max
v∈U

H(ψk,xk, v, t). (4.1)

Due to the presence of control constraints, uk(t) is usually perturbed with a
needle-shaped variation ∆uk(t) that inevitably involves the nominal control
ūk(t), in order to guarantee the non-negativity of the dominant term in
the increment formula (3.1) and, consequently, to diminish the value of J .
Thus, the majority of such techniques rests on the compulsory assumption
of explicit solvability of the condition (4.1).

This assumption is rather strong and therefore may present quite an
obstacle for numerical calculations. On the other hand, if a smooth admis-
sible control uk(t) is perturbed by interior variation, the resultant control
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function will be smooth and admissible in the sense of control constraints.
Moreover, the non-negativity of the dominant term in the increment formula
(3.5) can be achieved by choosing δ(t) according to (2.8) with g(t) =
W (uk, t) since in that case both δ(t) and W (uk, t) will carry the same sign.
Thus, under such approach there will be no need to search for nominal
admissible control (4.1) and the assumption on explicit solvability of the
maximum condition for Hamiltonian function with respect to the control
variable will become completely superfluous.

For computational purposes it will be helpful to re-write the increment
formula (3.5) as

J(uε) − J(u) = −ε · µ(u) + o(ε), ε ∈ [0, 1] (4.2)

where

µ(u) =

∫ t1

t0
W (u, t) δ(t) dt ≥ 0 (4.3)

and to formulate the necessary condition for optimality (3.7) in a simplified
form, that is, for optimal control u∗(t) it holds that µ(u∗) = 0. Now we will
briefly describe the optimization method based on interior variations.

STEP 1 For some admissible control uk that contains no constant
section (see Remark 1), integrate both direct (2.2) and adjoined systems
(3.2) and store their profiles xk = x(t, uk), ψk = ψ(t, uk,xk).
STEP 2 Compose the deviation function W (uk, t) and calculate the
value of µ(uk) ≥ 0 according to (4.3).
STEP 3 Check if uk(t) satisfies the necessary condition of optimality
within the limits of given precision:
IF µ(uk) = 0 THEN STOP
IF µ(uk) > 0 THEN CONTINUE.
STEP 4 (internal varying) Define δk(t) according to (2.8) for g(t) =
W (uk, t) and obtain a parametric family of admissible controls ukε(t) =

uk
(
t+ ε · δk(t)

)
, t ∈ T, ε ∈ [0, 1] according to (2.6).

STEP 5 Choose the optimal value of the variational parameter ε accor-
ding to

εk = arg min
ε∈[0,1]

J
(
ukε

)
, (4.4)

STEP 6 Determine the successive approximation as uk+1(t) = ukεk
(t),

set k := k + 1 and GO TO STEP 1.

The whole process must be repeated until the condition µ(uk) = 0 is
satisfied within the limits of required precision. It should be noted that
the described algorithm will yield as a result a Pontryagin extremal u∗(t),
that is, an admissible control function satisfying the necessary condition for
optimality µ(u∗) = 0.
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Замечание 2. Apparently, due to (3.6), function W (uk, t) may have
rather complicated structure in terms of t since it will always include both
x(t) and ψ(t). Quite often, however, these solution profiles of the direct (2.2)
and conjugate (3.2) systems may only be recovered by means of numerical
integration. In that case, the explicit forms of (3.6) and (4.3) may seem
useless. On the other hand, by defining

δk(t) =
(t− t0)(t1 − t)

M(t1 − t0)
W (uk, t) (4.5)

we just wanted to guarantee that both δk(t) and W (uk, t) carry the same
sign and thus to assure the non-negativity of the dominant term of (3.5).
Therefore, the exact form of W (uk, t) is not actually required and, for
computational purposes, we can approximate W (uk, t) in (4.5) with a mini-
mum-degree interpolating polynomial Pk(t) carrying the same sign as
W (uk, t) everywhere on T . In other words, Pk(t) must interpolate all zeros
of W (uk, t) and carry the same sing as W (uk, t) for all t ∈ T.

Теорема 2. Suppose that J(u) in the problem (2.1)–(2.4) is bounded from
below for all admissible controls. Then the sequence of admissible controls
{uk} generated by the described algorithm is a strictly relaxational one,

i.e., J
(
uk+1

)
< J

(
uk
)
, k = 0, 1, 2, . . . and converges to the necessary

condition of optimality in the sense that

lim
k→∞

µ
(
uk
)

= 0. (4.6)

Proof. Taking into account the estimate |o(ε)| ≤ K2ε
2, the increment

formula (4.2) should be examined for u = uk, uε = ukε :

J
(
ukε

)
− J

(
uk
)
≤ −ε µ(uk) + K2ε

2.

By virtue of the inequality µ(uk) > 0, the strict relaxation for small ε > 0
becomes obvious. Hence, taking into consideration the minimization prob-
lem (4.4) we have

J(uk+1) − J(uk) ≤ −ε µ(uk) + K2ε
2, ε ∈ [0, 1].

This inequality can be transformed into

0 ≤ ε µ(uk) ≤ J(uk) − J(uk+1) + K2ε
2, ε ∈ [0, 1]. (4.7)

Due to the relaxation property and taking into account the boundedness of
J(u) from below we have 0 ≤ J(uk) − J(uk+1) → 0 when k → ∞. Then,
passing to the limit in (4.7) when k → ∞

0 ≤ ε

[
lim
k→∞

µ(uk)

]
≤ K2ε

2, ε ∈ [0, 1].
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The latter is valid only if (4.6) holds. 2

5. Examples

In order to illustrate the performance and the convergence of optimization
technique described in the previous section it would be helpful to convey a
couple of explanatory examples.

Пример 1. It is desired to minimize the cost of the waste products x(t),
produced in the course of some chemical reaction, by choosing an optimal
temperature policy u(t) over the time interval [0, T ]. The cost of the waste
products is proportional to the square of the waste products produced, and
there is a cost associated with the temperature policy which is proportional to
the square of the temperature applied to the reaction. The objective functio-
nal is

J(u) =
1

2

∫ T

0

[
q x2(t) + r u2(t)

]
dt→ min (5.1)

where q ≥ 0 is the cost coefficient for waste and r > 0 is the cost coefficient
for temperature.

The rate of change of production of waste products at time t, ẋ(t) is
linearly related to the production of waste x(t) and to the temperature of
the reaction u(t) at time t by the equation

ẋ = a x(t) − b u(t), a, b > 0. (5.2)

The temperature u(t) is maintained between its minimal value umin and its
maximal one umax:

umin ≤ u(t) ≤ umax, ∀t ∈ [0, T ]. (5.3)

This restriction is quite logical due to the physical limitations of the equip-
ment that regulates the temperature of the reaction. Moreover, both the
initial and the final temperature of the reaction should take exact pre-
assigned values assigned, that is,

u(0) = u0, u(T ) = uT (5.4)

where u0 and uT are constants within the range [umin, umax]. These restric-
tions are also appropriate since the reaction must start and end at some
specified temperatures in order to avoid possible alterations in the final
product.
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Рис. 2. Example 1 — numerical results: (a) three successive control strategies; (b)
corresponding integrand functions.

This optimal control problem is linear-quadratic and its sub-variant
(5.1)–(5.2) without control constraints can be solved using so-called “feed-
back control” technique, attributed to Kalman [5]:

u∗(t) = − b
r
ξ(t)x(t)

where ξ(t) stands for the solution to Riccati equation

ξ̇(t) = −2aξ(t) − b2

r
ξ2(t) + q, ξ(T ) = 0.

The presence of control constraints (5.3)–(5.4) does not allow us to use
the above feedback scheme. However, we can try to improve a temperature
regime and get a significant decrease of the functional (5.1) by performing
several iterations of the algorithm proposed in the previous section.

For the following data set

T = 1, a = 2, b = 1, r = 2, q = 1, umin = 0, umax = 1, u0 = 0, uT = 0.75

we can start with some admissible smooth control function, e.g.,

u1(t) = −9

4
t

(
t− 4

3

)
, u1(0) = u0 = 0, u1(T ) = uT = 0.75

and perform successively three iterations of the algorithm based on interior
variations. The results of this numerical simulation is shown by Table 1 and

Figure 2, where F k(t) = q
[
xk(t)

]2
+r

[
uk(t)

]2
stand for integrand function

of (5.1), while the dashed line is used for k = 1, thin solid line for k = 2
and thick solid line for k = 3.
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128 O. V. VASILIEVA

The control strategy u3(t) suggests to implement a small jump of tempe-
rature in the proximity of the initial time t = 0 in order to achieve a
considerable decrease of the area below the curve F 3(t), equivalent to the
value of the functional J(u3).

We can also observe the presence of errors on the graph of F 3(t) when t
approaches T = 1. They are originated and accumulated due to numerical
integration of the system (5.2). The latter clearly indicates that it is not
advisable to follow more iterations of the method.

Iteration, k Functional, J(uk) Decrease (%)

k = 0 0.977143 –

k = 1 0.681681 30 %

k = 7 0.468412 31 %

Табл. 1. Example 1: functional values for successive approximation

uk(t), k = 1, 2, 3.

Пример 2. Consider the following scalar nonlinear problem of optimal
control:

J(u) =

∫ 1

0
[u(t) − 1] · x(t)dt→ min (5.5)

ẋ(t) = ρ · x(t) · u(t), x(0) = 1, ρ > 0, t ∈ T = [0, 1] (5.6)

with direct constraint for all control functions

u ∈ C1[0, 1], 0 ≤ u(t) ≤ 1, u(0) = 1, u(1) = 0. (5.7)

For this problem we haveH(ψ, x, u, t) = ρ·ψ(t)·x(t)·u(t)−(u(t) − 1)·x(t)
where ψ(t) can be found by solving the conjugate problem (3.2) for any
admissible u(t), that is,

ψ̇(t) = −ρ · u(t) · ψ(t), ψ(1) = 0. (5.8)

Actually, there are two separate cases to be considered: (a) ρ > 1 and
(b) 0 < ρ ≤ 1. In the case (a), the problem can be easily solved using the
classical maximum principle (see more details in [6, pp.123-126]). However,
this solution is not smooth and has piecewise constant structure (see Figure
3 (a)):

u∗(t) =





1, if t ∈
[
0, ρ− 1

ρ

)

0, if t ∈
[
ρ− 1
ρ , 1

] , u∗(0) = 1, u∗(1) = 0.

Vasiliev2009.tex; 7/09/2009; 12:49; p.128



OPTIMAL CONTROL IN TERMS OF SMOOTH AND BOUNDED FUNCTIONS 129

Рис. 3. Example 2 — solutions via maximum principle: (a) feasible non-smooth solution;
(b) non-feasible solution.

Рис. 4. (a) Members of the sequence {uk(t)} for k = 0, 1, . . . , 7; (b) functional values
J
(
uk
)

for k = 0, 1, . . . , 7.

In the case (b), the maximum principle provides a constant solution
ū∗(t) ≡ 0 which is, in effect, is non-feasible since the end-point condition
u(0) = 1 is not satisfied (see Figure 3 (b)).

Here we also have that, according to [6],

inf
u(t)∈U

J(u) = −1

where U is defined by (5.7). Our task will be to construct a relaxational
sequence of smooth admissible controls {uk(t)} for the case (b) using the
optimization algorithm described in the previous section.

First, we have to choose an initial approximation out of the set of smooth
real functions satisfying (5.7). An excellent choice will be to work with
polynomials and make use of the extensive variety of computational tool
based on polynomial interpolation, as already mentioned in Remark 2.
Apparently, a segment of straight line passing through the end-points would

Vasiliev2009.tex; 7/09/2009; 12:49; p.129
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be an admissible control in minimum-degree polynomial form: u0(t) =
1 − t, u0(0) = 1, u0(1) = 0.

For this initial control, plotted on Figure 3 (b) with dashed line, we define
ρ = 0.5 and then employ the numerical algorithm using for all iterations
the same values of δk(t) and εk, that is, δk(t) = t(1 − t), εk = 1, k =
0, 1, 2, . . . . This choice will yield us a compact form of the sequence {uk(t)}
with uk(t) = (1 − t)2

k
. The limit of this sequence when k → ∞ gives a

feasible solution to our problem:

u∗(t) = lim
k→∞

(1 − t)2
k

, t ∈ [0, 1], u∗(0) = 1, u∗(1) = 0

Iteration Control Functional

k = 0 u0(t) = 1 − t -0.61654223956

k = 1 u1(t) = (1 − t)2 -0.77167189561

k = 2 u2(t) = (1 − t)4 -0.89664786101

k = 3 u3(t) = (1 − t)8 -0.93708411719

k = 4 u4(t) = (1 − t)16 -0.96848132167

k = 5 u5(t) = (1 − t)32 -0.98428241605

k = 6 u6(t) = (1 − t)64 -0.99670285341

k = 7 u7(t) = (1 − t)128 -0.99860249872

Табл. 2. Example 2: functional values for uk(t), k = 0, 1, . . . , 7.

Figure 4(a) shows first eight terms of the sequence {uk(t)} whereas Figure
4(b) clearly indicates that the relaxation property of {uk(t)}, that is,

J
(
uk+1

)
≤ J

(
uk
)
, k = 0, 1, 2, . . . , 7.

More detailed data is summarized in the Table 2.
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Bolet́in de la Sociedad Matemática Mexicana. — 1960. — Vol. 2. — P. 102–119.

Vasiliev2009.tex; 7/09/2009; 12:49; p.130



OPTIMAL CONTROL IN TERMS OF SMOOTH AND BOUNDED FUNCTIONS 131

6. Vasiliev O. V., Arguchintsev A. V., 1999, Metody optimizacii v zadachah i
uprazhneniyah [Optimization methods: problems and exercises] / O. V. Vasiliev,
A. V. Arguchintsev. — Moscow: Fizmatlit [in Russian], 1999.

O. V. Vasilieva

Optimal control in terms of smooth and bounded functions

Abstract. In this paper, the author examines the properties of interior variations
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