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for Linear Sobolev type Equations
in Relatively Radial Case
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Abstract. Sobolev type equations now constitute a vast area of nonclassical equations
of mathematical physics. Those called nonclassical equations of mathematical physics,
whose representation in the form of equations or systems of equations partial does not
fit within one of the classical types (elliptic, parabolic or hyperbolic). In this paper we
prove a generalized splitting theorem of spaces and actions of the operators for Sobolev
type equations with respect to the relatively radial operator. The main research method
is the Sviridyuk theory about relatively spectrum. Abstract results are applied to prove
the unique solvability of the multipoint initial-final problem for the evolution equation
of Sobolev type, as well as to explore the dichotomies of solutions for the linearized phase
field equations.

Apart from the introduction and bibliography article comprises three parts. The first
part provides the necessary information regarding the theory of p-radial operators, the
second contains the proof of main result about generalized splitting theorem for strongly
(L,p)-radial operator M. The third part contains the results of the application of the
preceding paragraph for different tasks, namely to prove the unique solvability of the
multipoint initial-final problem for Dzektser and to explore the dichotomies of solutions
of the linearized phase field equations. References not purport to, and reflects only the
authors’ tastes and preferences.

Keywords: linear Sobolev type equations, generalized splitting theorem, dichotomies of
solutions, multipoint initial-final problem.

Let 4 and § be Banach spaces, the operators L € L(4;F) (linear and
continuous) and M € Cl(4; §) (linear, closed and densely defined). Let the
operator M be a relative p-radial with respect to operator L (or shortly,
(L,p)-radial operator), p € {0} UN (terminology and the results see in
sec. 3 [12]). We note only that the concept of (L, p)-radial operator M was
introduced by G.A. Sviridyuk in [9].

Let us consider a linear Sobolev type equation

Li, = Mu. (0.1)
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Sobolev type equations now constitute a vast area of nonclassical equations
of mathematical physics. Detailed historical review of these studies and an
extensive bibliography can be found in the book [1].

In this paper we prove a generalization of the splitting theorem of the
spaces 4 and § on invariant subspaces in accordance to the splitting of
relative L-spectrum of operator M. As you know, firstly the splitting theo-
rem formulated and proved by G.A. Sviridyuk [8] in the case of (L,p)-
bounded and (L, p)-sectorial operators M. A.V. Keller developed these
results in [10] and applied them to the study of the dichotomies solutions
[3]. Splitting theorem in the case of (L, p)-radial operator M with respect
to the dichotomy of the solutions appeared, for example, in [5] (see in more
detail in [6]). First proof of the generalized splitting theorem in the case of
(L,p)-bounded operator M appeared in [13].

The need for generalized splitting theorem appeared in the study of
multipoint initial-final conditions

Pj(u(rj) —u;) =0, j =0,n, (0.2)

for linear equations of Sobolev type (0.1). In these parts 7; € R (75 < 7j11),
uj € i and P; is a relative spectral projections (talking about them will go
to claim 1 this article), j = 0,n. Note that if n = 1 then the condition (0.2)
take a simpler form

Po(U(To) — Uo) - Pl(U(Tl) — Ul) - 07 (0.3)

then there will be a initial-final condition [14]. Problem (0.1), (0.3) has been
very extensively studied at various aspects in [4], [15], [16].

Apart from the introduction and bibliography article comprises three
parts. The first part provides essential information regarding the theory of
relatively p-radial operators [12], the second one contains the main result,
namely the proof of the generalized splitting theorem in the case of (L, p)-
radial operator M. The third part contains the application of the preceding
paragraph for different tasks, namely to the prove the unique solvability of
the multipoint initial-final problem for Dzektser and to explore the dichoto-
mies of solutions of the linearized phase field equations. References not
purport and reflects only the authors’ tastes and preferences.

Finally, we note that all considerations are conducted in real Banach
spaces, but when considering the «spectral issues» introduced their natural
complexification. All circuits oriented counterclockwise movement and limit
area lying to the left in such a motion. Symbols of © and I denote, respecti-
vely, the «zero» and «identity» operators whose domain is clear from the
context.

In conclusion, the authors consider it their pleasant duty to express
their sincere gratitude to G.A. Sviridyuk for his interest and active creative
discussions.
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1. Relatively p-radial operators

Recall the standard notation of the theory of relatively p-radial operators
9], [12].

Suppose, as above, $ and § be Banach spaces, operators L € L({;F)
(linear and continuous) and M € CI(L;§) (linear, closed and densely de-
fined).

Denote

prM) ={ueC: (uL — M) € LW}, o™ (M)=C\ pH(M),

RE(M) = (uL — M)™'L,  LE(M) = L(uL — M)™, e p“(3),
Rl ) =TT R (00 15, (00) =TT 0. A0 (6 =T

Definition 1. Operator M is called p-radial by relative to operator L (or
shortly (L, p)-radial) if

(i) IPE R (5, +00) < pH(M);

(it) IK > 0 Y = (pio, i1, - - -, f1p) € (B, +00)P! ¥ne N

n n K
max{[|(R(,, ;) (M)l 1L (M) 2} < — :
pe — B)"
kl;[O( k= B)
Also introduce the notation
U = ker R, (M), §° =ker L, (M), Lo =L o Mo =M o
It omMn

By 4! (') denote the closure of the lineal imR<LM ») (M) (imL@p) (M)). Also

by £1 (§) denote the closure of the lineal uOJ}imR@m (M) (soirimL(LM’p) (M))
in the norm &l (§F).

Definition 2. Vector-valued function uv€ CY(R ;) is called the solution

of the equation (0.1) if it satisfy to this equation on Ry = {0} UR,.

Definition 3. The closed set 8 C U is called the phase space of the
equation (0.1), if

(i) any solution u(¢) of the equation (0.1) implies in B (pointwise);

(ii) there the unique solution of the Cauchy problem

u(0) = ug (1.1)

for the equation (0.1) with any wug of a lineal 98 which is dense in 3.
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Together with the equation (0.1) consider the equivalent equation
LiaL —M)™'f = M(aL — M)7'f,  aept(M). (1.2)

Theorem 1. Let the operator M be a (L,p)-radial. Then the phase space
of equation (0.1) ((1.2)) is set U (F).

Definition 4. The family of operators U® : R, — L£(81) is called a resolving
semigroup of equation (0.1), if

(1) UsUt = Ut Vs, t € Ry;

(ii) u(t) = Utug is a solution of this equation for any g from some lineal
witch dense in 4;

(iii) restriction of the semigroup identity on the phase space B3 of the

equation is UY| =1
B

Semigroup {U’ € L{L) : ¢ € EJri called exponentially bounded with
constants C, 3 if 3C' > 0 I8 € RVt € Ry ||UY|| gy < CeP.

Theorem 2. Let the operator M be a (L,p)-radial. Then there exists
strongly continuous resolving semigroup of equation (0.1) ((1.2)) considered
on subspace 1 (@) And it is exponentially bounded with constants K, 3 from
definition 1.

Remark 1. Operators of the resolving semigroup for (0.1) ((1.2)) with
t > 0, as amended, are discussed in [7], can be represented as

-1 k k
Ut =s- Jim <<L — %M) L) = s- lim (éRg (M))
—5 00 —0 t

k
t , to A\ (ko ‘
F'=s-lim (L{L—-—-M =s- lim | =L%(M)
k—o0 k k—oo \ t %

Remark 2. The identity of the semigroup {U? € L(8l) : t e R} } ({F* e
) - ™ ; ; 1 t _ i 0 (=0
L(F):t € Ry}) is a projector P = tl_l)IglJrU Q= tg%nJrF ) along 4° (§~) on

gt (Fh.
Definition 5. Operator M is called strongly (L,p)-radial if for any
A, Ho, 41, -, fp > 3 the next conditions are fulfilled

(i) there is dense in § lineal % such that for all f € §

IMAL = M)TUEE (M)l < —— i)
=8 [t - 5)
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K
p

A= 8) 11 (u— B)

k=0

(i) IR, (M)AL = M) gy <

Theorem 3. Suppose that M is strongly (L, p)-radial. Then
HU=od, =35 oF,
(ii) Ly = L‘ € LWFFR), My=M € CI(Uk; 55,
sk domM,
domM;, = domM Nk, k =0,1;
(iii) there exist operators Myt € L(F0;40) u LT € L(FHuUb).

2. Generalized splitting theorem

Let L and § be Banach spaces, operators L € L(4;F) and M € CI(L; F),
where the operator M is strongly (L, p)-radial, p € {0} UN. We introduce
the condition

al(M) = U ajL(M), n € N, and ajL(M) # (), there is
7=0

closed loop «; C C and ~; = 0Dy, where D; D ajL(M), (2.1)
such that Dj Nof (M) =0 and Dy N'D; =
for all j,k,] =1,n,k # 1L

Consider operators P; € L(U) and Q; € L(F), j = j,n, that because of
the relative spectral theorem [3] have the form

1

1 _
pP=— [ RYM)d = — [ LY i —=1,n.
7 271 L]' M( ),Uy QJ o Lj M( )M: J » T

By the results of [5] operators Py and Qg are of the form :
n n
Py=P=>PF;, Q-=-Q-> Q;
j=1 j=1

Lemma 1. Let the operators L € L) and M € CI(4;F). The operator
M is strongly (L, p)-radial, p € {0} UN and the condition (2.1) holds. Then
the operators Pj : 4 — 8L, (j = 1,n) are projectors and

() PP, = P,P = P;, j = T,

Proof. (i)

(2731’)2 / / Ry;(M)RY(M)dpd\ =

Y

PP =




24 S. A. ZAGREBINA, M. A. SAGADEEVA

dA
A—p

1 dp L L
- G /u—A RMMMA+/RAMMM
v Vi vy Vi

= Qj

by the Fubini’s theorem, the theorem deductions and the right Hilbert
relative resolvent identity

RY(M) = Ry(M) = (n— N Ry (M) R} (M).

The second equality in (i) and proved similarly.
(ii)) Now applies the same theorem and the same identity as in (i) when
k £ 1 and we obtain

1
PP = i | | BEangkanduas -
Ve N

o i . )
- G A_M/RAMMM+/RAMM§/M_A o
v

Tk 8l Tk

Remark 3. Projector Py by the results of [6] hold similar equalities
(1) PPO = P()P = Po;
(i) P = PPy =0, j =1,n.

Remark 4. Clearly that for projectors Q; (j = 0,n) the relations of
Lemma 1 and Remark 3 are truth by the construction.

By Lemma 1 and Remarks 3, 4 the projectors P; and Q;, j = 0,n call
relative spectral projectors. ' ' L
We introduce the subspace 4 = imP;, §% = imQ;, j = 0,n. By

construction,
n

u%4éuu and #:QB#%
j=0

=0

By the L;; denote the restriction of L on £, j = 0,1 and by M;; denote
the restriction of M on domM N U, j = 0,n. It’s easy to show that
Pjp € dom M, if ¢ € dom M then the domain of dom My; = dom M N £
is dense in U, j =0, n.

Theorem 4 (generalized spectral theorem). Let the operators L € L(4;F)
and M € CI(; ), the operator M is strongly (L, o)-radial and the condition
(2.1) holds. Then

(i) operators Ly; € LUV F), My; € CI(UY; Y)Y, j =0,n;

(ii) there exist operators Ll_j1 € L(FY;UY), j=0,n.

WzBectnst UpKyTCKOro rocyJapCcTBEHHOIO YHUBEPCUTETA.
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Proof. The proof is based on ideological Sviridyuk proof of splitting theorem
[10] so is given in abbreviated form.

: 1 _
0) Lyl =5 /Llj(uLlj — Myy) " Ly Pydp = Q5 L1; P,
i

where j = 0,n. Next let ¢ € dom My; then

1 _
My Py = o— /Mlj(MLlj — Mij) ™' Ly Pypdp = QM Pygp.
i
Since
Myj(uLj — Mij)™ Ly = plaj(uLy; — M)~ Ly — Ly,

and the rights of equality is a continuous operator, densely defined on 4!/
These continuous operators M;;FP; can be uniquely complemented to a
continuous operator defined on all subspace 4!7. Through My; P; denote
this extension j = 0, n.

(ii) Since

2mi 2mi
Vi Vi

1 _ 1 _
Ly —/(ML—M) 'Qdu —,/Llj(,ULlj_Mlj) 'Qidp = Q;

and

2mi

1 _ 1 _
i /(ML — M) 'Qpdp | Ly = — /(MLU — My;) 'Ly Pdp = P,
i Y

the operatorws Ll_j1 € L(FY; U are the restriction operators
1
— [ (uLM)71Q,d
= / (WL M)~ Q;dp
i

onto the subspaces % j =0, n. O

Under the conditions of Theorem 4 exist operators S; = Ly;My; €
Clul), j =0,n.

So let the operator M is strongly (L, p)-radial and the condition (2.1)
is fulfilled 7; € Ry, (15 < Tj41), u; € &, j = 0,n. Take f € C®(R;;F),
4 = 0,n. Consider the Sobolev type equations

Li = Mu + f. (2.2)
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We acton to this equation by the series of projectors I—Q and Q;, j = 0,n
and obtain an equivalent system of equations

Hi® = u® + Mgy, (2.3)
’lljl' = Slj’u]l' + Ll_jlfjl, (2.4)
where H — Mo_lLo € LU is a nilpotent operator of degree p € {0} UN,

S1; = Ll_leIj € Cl(ﬂjl.) and range of o(S;) = UjL(M); fO=1-Q)f,
fjl :ijyuO:(H_P)u7 u]l :PJU7-7:O7_”

3. Applications of the generalized splitting theorem

3.1. MULTIPOINT INITIAL-FINAL PROBLEM FOR THE DZEKTSER
EQUATION

Let &L and § be Banach spaces, operators L € L(4;F) and M = CI(L; F).
Where the operator M is strongly (L, p)-radial, p € {0} U N. Consider the
multipoint initial-final problem

Pj(u(rj) —u;) =0, j=0,n (3.1)
for the equation (2.2).

Definition 6. Vector-valued function u € C([0,7,];40) N CL((0,7,);L0),

satisfying (2.2), called a solution of the multipoint initial-final problem (2.2),

(3.1) if it satisfies the equation (2.2) and the terms oftEer Po(u(t)—up) = 0,
70

Pj(u(ry) —uy) =0, j = T,n.

Lemma 2. Let operator M is strongly (L, p)-radial (p € {0} UN) and part
of the spectrum ole (M) is bounded, j = 1,m. Then for any vector function
[0 e CPrL((0,7);3Y) there exists a unique solution u® € CY([0,7];U°) of

equation (2.3) which also has the form

P

A4

ul(t) = = HIM — fO(t).
dtd
g=0

Proof. By substituting the vector function u® = u%(t) in (2.3) verify the
existence of solutions. Uniqueness obtained by successive differentiation of
the homogeneous equation (2.3) 0 = HPu’® = .. = Hu® = 4°. Lemma
proved. O

Lemma 3. Under the conditions of Lemma 2 for any vector u; € i and for
any vector-valued function fj1 e C(|o, Tn];S}) there exists an unique solution

WzBectnst UpKyTCKOro rocyJapCcTBEHHOIO YHUBEPCUTETA.
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u%j € C’([O,Tn];ﬂ}) N C’l((O,Tn);M%j) of the problem Py;(u(t;) —uj) =0 for
the equation (2.4), which also has the form

t—75 T ST —
u]l(t) =U; Vug, —/t Uijljlfjl(s)ds.

Proof. If 7 = 0 then declaration of Lemma is a classical result by the
radiality of operator Sp.

Let’s prove the uniqueness. Using the substitution we see that the vector-
valued u%j = u%j(t) is a solution to this problem. Let v = v(t), t € [0, 7]
be an another solution of this problem. Construct vector-valued function
w(s,t) = LljUf;TfU(s). By construction

ow(s,t) an; £ 0V(8)
— L L.Us__~2 .
ds Y7 0s v(s) + LU ds 0
Hence w(r, t) = w(t, ), ie, Ufj_T’U(t) —v(t) =0. =

Thus we have proved

Theorem 5. For any vectors u; € Y and any vector function f :[0,7,] —

&, which satisfies conditions of Lemmas 2, 3, there exists an unique solution
u € C([0, 7]; 4) N CH(0, 7,); 18), which also has the form

We now consider the Dzektser model for evolution of the free surface of
the filtered fluid.

Let Q@ C R”™ is a bounded domain with boundary €2 of class C*°.
Consider the equation

(A — A)ug = aAu — BA%u + f, (3.2)
where A € R, o, 8 € R, with the boundary conditions
u(x,t) =0, (x,t) € 9Q x (0,7,). (3.3)

This system modells the evolution of the free surface filtered fluid (see [11]
and references there in). We reduce equation(3.2) to the equation (2.2). For
this we take the functional spaces

U={ue Wf(Q) cu(z) =0,z €00}, §F= Wf(Q),

where k£ € {0} UN, p € (1, 400) and qu(Q) are Sobolev spaces. We define
the operators L € L(;§), M € CI(;F) by formulas L = A — A, M =
aA — BA?, where dom M = {u € WFT(Q) : u(x) = Au(z) = 0, x € 99}



28 S. A. ZAGREBINA, M. A. SAGADEEVA

Lemma 4. For any A € R\{0,a-5~'} operator M is strongly (L, 0)-radial.

We denote by {\r} sequence of eigenvalues of the homogeneous Dirichlet
problem for the Laplace operator A in Q. The sequence {\x} is numbered
by non-increasing with according to multiplicity. We denote by {g} ortho-
normal (in the sense of Ly(€2)) sequence corresponding eigenfunctions, ¢y €
C*(Q), k € N. The L-spectrum of M has the form

e — A2

O'L(M): Mk:ak—mykeN\{l)\l:)\} .
A— Ak

Clearly that for such a set we can pick up the contour v € C, which satisfying

the condition (2.1). Construct projectors

Py = Z (- ¢r) s §=0,m.
kiﬂkéO’]L(M)

Take 7; € Ry (15 < Tj41), u; € U, j = 0,1 and will be in the cylinder
Q2 x (0,7,) seek a solution of (3.2), satisfying the boundary condition (3.3)
and conditions

Pi= Y Alu(ry) —u) o) x =0, j =0 (3.4)
kiMkEU]L(M)

of multipoint initial-final problem. For simplicity, only the case where f is
independen to ¢, ie f = const. Theorem 5 and Lemma 4 follows

Theorem 6. For any A € R\ {0,c- 371}, B € Ry, up € domM, u, € 4,
f €% ewists an unique solution u € C([0,7];L0) N CL(0,7);0) of problem
(3.4), (3.3) for the equation (3.2).

Remark 5. By Lemmas 2, 3 and Theorem 5, you can get the kind of
solutions, however, due to the bulkiness it descends.

3.2. DICHOTOMY OF SOLUTIONS OF THE LINEARIZED PHASE FIELD
EQUATIONS

Let the operator M is strongly (L, p)-radial with constant 8 > 0. Intro-
duce the condition

There is w > 0, that e“(M)N{peC: —w<Repu<w}=0.
Denote C; = {p € C: Rep > 0}, C_ = {p € C: Rep < 0}, (3.5)
ox = o (M) N Cyx and let set o is bounded.

Remark 6. Condition (3.5) is a special case of condition (2.1) for n = 1.
However, when considering this condition dichotomies enhanced condition
of separability of the imaginary axis. Further more, the description of this
case can be introduce by the simpler notation.
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Due to the relative isolation of the spectrum there is a finite loop I'y C
p"(M)NC, and bounded region containing o .

According to the relative spectral theorem [3] spaces U! and ' split:
UM = Ut i, ' =t ®F . This splitting of the corresponding projection

1
P, = — [(uL — M) 'Ld P_.=P-P,,
+t o (1 ) 1, +
Iy
and .
Qr = 5= [ Ltk =M)7Hdp, Q- = Q- Qs.
Iy
Denote Lo =L| , ML =M , domMy = domM N *. By Lemma
LF domM4

2 [3] Ly € LUE;§F), My € CI(UF; §F). Furthermore, by the Theorem 1
[3] we have o™+ (M) = o4, so the operator M, is (L, p)-bounded [6], and
M_ is (L_, p)-radial with constant § < —w < 0.

Construct a semigroup {UL € L(UF) 1t € R}

ko1 ¥
UL =s-lim | Ry (My) ) .
k—oo \ T 3

Due to the fact that the operator M, is (L4, p)-bounded, semigroup
{Ut € L(U") : ¢ € Ry} can be extended to the group {U! € L) : ¢t €
R}. By Remark 2 operators of the resolving semigroup of equation (0.1) can
be represented as

Ul =U'P=U"Py +P.)=U\Py +ULP_.

Definition 7. Let 3 is a phase space of equation (0.1). The set ' C R
is called an invariant subspace of this equation, if there exists an unique
solution u = u(t) problem (0.1), (1.1) for any of the ug from dense in 3!
lineal, and it has the form u(t) = Ulug € B Vt € R,

Theorem 7. Suppose that M is strongly (L, p)-radial and holds (3.5),
then the subspace Ut and $4~ are invariant spaces of equation (0.1).

Definition 8. Let 8 C il is a phase space of the equation (0.1) and
P = B! @ P2, where L* is an invariant subspace, k = 1,2. We say that
equation (0.1) has an exponential dichotomy if its solutions satisfired to the
following conditions:

(i) IN1, vy > 0 ' @) < Noem =D |lul ()], s > ¢

(i) AN, vo > 0, |[u?(1)]| < Nae 2= |ju2(s)||, Vs € R t € [s, +00),
where the solution of the equation u*(t) € B*, k = 1,2.
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Remark 7. In other words, the existence of exponential dichotomies of
solutions means that if the solution lie in one of invariant subspace then
it grow exponentially and if it lie in another one then it is exponentially
decrease.

Theorem 8. Let the operator M is strongly (L, p)-radial and holds (3.5).
Then the equation (0.1) has an exponential dichotomy.

Let us consider the linearized phase-field equations.
Consider the system of equations

et(mﬂf) +T/Jt($yt) :Ae(mﬂf): (mﬂf) € XEJW (36)
Adp(x,t) + ap(x, t) + fO(x,1) =0, (x,1) € @ xRy, (3.7)
equipped with the boundary conditions
o0 _
%(m,t) + M(z,t) =0, (x,t) € 90 xRy, (3.8)
o =
%(x,t) + Mp(x,t) =0, (x,t) €00 xRy, (3.9)

which is the linearization at zero of phase-field equations describing within
mesoscopic theory of phase transitions of the first order [2]. Here @ C R*
is a bounded domain with boundary 9€} of class C*°, A € R, o, 5 € C.
Unknown functions are 6(x,t),¥(x,t).

We reduce the system (3.6)—(3.9) to equation (2.2). Let’s make the
replacement 0(x,t) + ¥(x,t) = ul(x,t),¥(x,t) = v(x,t). Then the system
takes the form

ug(@,t) = Aufe, t) — Av(z,t), (x,t) € Q xRy, (3.10)
Av(z,t) + (o — Bv(x, t) + Bula,t) =0, (2,t) € Q2 xRy, (3.11)
%(m,t) +du(z,t) =0, (x,t) €90 xRy, (3.12)

%(w,t) + X (x,t) =0, (x,1) €00 xR,. (3.13)

Let 8 = {(u,v) € (H*(Q))?: (£ + Nulz) = (£ + Nv(z) = 0,2 € 00},
§ = (La2(2))2.

I 0 A —A
L(@ @)7 M(m (a—ﬁ)IJrA)'
Thus constructed statements is L, M € L(Ll;§). Moreover, if
/ 2 ow
W={we H*(Q): %(w)Jr)\w(m) =0, x € 9}
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then ker L = {0} x &/'.

Let Aw = Aw then A € LW, Lo(2)). Through {yx : k € N} denote
orthonormal in the sense of the scalar product (-,-) in Ly(€) eigenfunctions
of the operator A, numbered by non-increasing eigenvalues {Ar : k € N}
with respect to their multiplicities.

Lemma 5. Let § — a ¢ o(A). Then the operator M is strongly (L,0)-
radial.

In this case, L-spectrum of M has the form

M) = =———" " LkeN\{l: \y=08-— .
otor) = {2 ey 1= 5 - )
Construct projectors
> Gerer O > (erker O
k:Rep; >0 k:Rep, <0
Py = Blwnler q | P = BLor)er ()
k:Rep, >0 pa=Ak k:Rep, <0 Fa=Xk

Theorem 9. Let § — o, —a,0 ¢ o(A). Then the solution of the problem
(3.10) — (3.13) have an exponential dichotomy.

More detailed justification assertions in this paragraph can be found
in [6].
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C. A. Barpebuna, M. A. Caraaeesa

O6001enHas TeopeMa O pacileIlICHNN s
JUHEeHbIX ypaBHeHuii cobojiIeBCKOro Tuma
B OTHOCHUTEJIbHO PaAuaJIbHOM CJIy4ae

AwnHoTanus. YpaBHeHus COGOMEBCKOTO THIIA B HACTOSINEE BPEMsI COCTABISIOT 06-
MIUPHYIO 06JaCTh Cpeliu HEKITACCHIeCKUX ypaBHEHUI MaTeMaTndecKoii ¢dpusnku. Hekmac-
CUIECKUMU HA3BIBAIOT T€ YPABHEHWS MATEMATHIECKOH (PUBWKHW, 9bU TPEACTABICHUS B
BHUJe YPABHEHWHl WJIW CHCTEM YPABHEHWH B YACTHBIX TPOM3BOMHBIX HE YKJIAIBIBAIOTCS
B pPaMKaX OJHOTO M3 KJIACCHYECKHX THIOB — SJITHNTHIECKOTO, MAapaboInIecKoro Wil
ranepboandeckoro. B manHON paboTe NoKasbiBaeTcs 0O0OIIEHHAs TeopeMa O PACIIel-
JIEHUH TPOCTPAHCTB W JefiCTBUil OMepaTopoB AJs ypaBHEHUsT COOOIEBCKOTO THHA € OT-
HOCHTENBHO PATHAILHBIM omeparopoM. OTMETHM, 9TO HeOGXOMMMOCTL B 06OGIIEHHOM
TeopeMe O PACIIEIIEHN T TOSBUJIACH TP H3YIeHWH MHOTOTOYETHBIX HATATbHO-KOHETHBIX
JUTsT TUHEHHBIX ypaBHEHUH co60MeBCKOTO THIIA. B HacTosdIee BpeMs 9TH 331290 HAIIH
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CBOe TpUMeHEHWE B TeOPUH YIPABISIEMOCTH W ONTUMATBLHOTO yIpaBieHus. OCHOBHBIM
MeTOMIOM UCCIeTOBaHUS IBAsSeTcs Teopusd CBUPHIIOKA OTHOCUTENBHOTO CIIEKTPA.

CTaThbst KpOMe BBeJIeHNU I M CTUCKA JUTEPATY DBl CONEPXKUT TpH 9acTh. B mepBoit acTn
TPUBOAATCS HeOOXOMMMBIE CBEJIEHNST TEOPUH OTHOCHUTENHHO P-paJHalbHBEIX OTEPATOPOB,
BTOpPasi COIAEPKNUT OCHOBHOI Pe3yNBTAT CTATBA — JOKA3ATETLCTBO OOOGIIEHHON TEOPEMBT
0 PACTIEIIIEHUH B caydae Cuibho (L, p)-pagmanbroro oneparopa M. Tperbs 4acThb copep-
KUT MpUMeHeHNe Pe3yABTATOB MPeBIAYINero MyHKTa JJdsd Pas3indHBIX 3aJad, & TMEHHO
LIS TOKa3aTelbCTBa OMHO3HAUHOM PaspelllMMOCTH MHOTOTOUEUHON HadaJdbHO-KOHETHOMN
33729l A1 ypaBHeHUd [[3eKnepa w A1d MccaeOBaHUS TUXOTOMUN DelleHnil THHEAPH-
30BaHHOU CHCTeMBI ypaBHeHUN $azoBoro moisd. CIUCOK TUTepPaTypPHl He TMPeTeHIyeT Ha
TMOTHOTY W OTpaYKaeT JIWIMIb BKYCHl W IPUCTPACTHSI aBTOPOB.

KuaroueBrbie ciioBa: nuHeliHBE ypaBHeHNS cOO0TEBCKOTO THIIA, 0000IEHHAs TEOPEMa
O pacIenIeHnd, JUXOTOMAN PelleHnii, MEOTOTOUeTHAasT HadadbHO-KOHETHAS 3aa9a.
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