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Abstract. One of the main derived objects of a given structure is its automorphism
group, which shows how freely elements of the structure can be related to each other
by automorphisms. Two extremes are observed here: the automorphism group can
be transitive and allow any two elements to be connected to each other, or can be
one-element, when no two different elements are connected by automorphisms, i.e., the
structure is rigid. The rigidity given by a one-element group of automorphisms is called
semantic. It is of interest to study and describe structures that do not differ much from
semantically rigid structures, i.e., become semantically rigid after selecting some finite
set of elements in the form of constants. Another, syntactic form of rigidity is based
on the possibility of getting all elements of the structure into a definable closure of the
empty set. It is also of interest here to describe “almost” syntactically rigid structures,
i.e., structures covered by the definable closure of some finite set. The paper explores the
possibilities of semantic and syntactic rigidity. The concepts of the degrees of semantic
and syntactic rigidity are defined, both with respect to existence and with respect to the
universality of finite sets of elements of a given cardinality. The notion of a rigidity index
is defined, which shows an upper bound for the cardinalities of algebraic types, and its
possible values are described. Rigidity variations and their degrees are studied both in the
general case, for special languages, including the one-place predicate signature, and for
some natural operations with structures, including disjunctive unions and compositions
of structures. The possible values of the degrees for a number of natural examples are
shown, as well as the dynamics of the degrees when taking the considered operations.
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Ansnoranus. OrMedeHo, 9TO OJJHUM U3 OCHOBHBIX IIPOU3BO/IHBIX OO'bEKTOB JIAHHOMN CTPY-
KTYDBI SIBJISIETCS €€ TPYIIa aBTOMOPMU3IMOB, MOKA3BIBAIOIIAs HACKOJIBKO CBODOIHO dJIe-
MEHTBI CTPYKTYPBI MOTYT OBITH MK Iy cO00# cBsizaHbl aBTOMOPdU3MaMu. 31ech HAOII0-
JAIOTCA JBE€ KPAWHOCTH: T'PYIIa aBTOMOPMU3IMOB MOXKET ObITh TPAH3UTUBHON U MO3BO-
JISIONIEH CBA3BIBATH MEXKJy CODOM JI00Oble [1Ba JIEMEHTA, WJIN OJHO3JIEMEHTHOMN, KOTIJa
HUKaKNe [IBa PA3JUYHBIX JIEMEHTa He CBI3aHbI MEXIy co0oit aBTOMOp(dU3MaMHU, T.€.
CTPYKTypa fABJIETCS 2KeCTKoi. 2KecTKOCTh, 3ajjaBaeMast OTHO3JIEMEHTHOM IPYTIIION aBTO-
MOPGU3MOB, Ha3bIBAETCS CEMaHTHYEeCKOi. IIpeicTaBiisier nHTEpEC U3ydeHrne U ONUCAHUE
CTPYKTYP, KOTOPBble HECUJIPHO OTJIMYAIOTCA OT CEMAaHTHYECKH YKECTKHX CTPYKTYD, T.e.
CTAHOBATCA CEMAaHTUYECKU KECTKUMHU I10CJI€ BbLIEJICHUA HEKOTOPOI'0 KOHEYHOI'O MHOXKe-
CTBa 3JIEMEHTOB B BHJEe KOHCTAHT. J[pyroii, cMHTaKCHYeCKWil BUJ YKECTKOCTH OCHOBAaH
Ha BO3MOX>KHOCTH IIONIQJaHUA BCEX 3IJIEMEHTOB CTPYKTYPBI B OIIPEJIeINMOe 3aMbIKAHUE
IyCTOTO MHOXKECTBA. 3/1eCh TaKKe€ IMPEJCTABJISET WHTEPEC ONMUCAHUS <IMOYTH» CHHTAK-
CHUYECKHU JKECTKHUX CTPYKTYpP, T.€. CTPYKTYP, HOKPBIBAEMBIX OIPEIEIMMbIM 3aMbIKAHUEM
HEKOTOPOT'O0 KOHEYHOTO MHOXKECTBa. B paboTe n3y<ueHbl BO3MOXKHOCTH CEMAHTHIECKON U
CHUHTAKCUIECKOHN »KeCTKOCTU. PaccMOTPEHbI MOHATHS CTEIIEHN CEMAaHTUIECKON M CUHTAK-
CHY€ECKOM 2KECTKOCTU KAK OTHOCUTEJIHHO CYIIIECTBOBAHNUSA, TAK ¥ OTHOCUTEIHLHO BCEOOIIHO-
CTH KOHEYIHBIX MHOXKECTB 3JIEMEHTOB 33JaHHOI MottHocTr. OIpeiesIeHo TOHATHE HHIEKCA
2KE€CTKOCTH, ITOKA3bIBAIOIIee BEPXHIOIO OIEHKY /IS MOIIHOCTEN ajrebpandecKux THUIIOB, U
OINKCAHBI €r0 BO3MOXKHbBIE 3HaUeHHs. VccieqoBanbl Bapualliy KECTKOCTU U UX CTEeIeHen
KaK B OOIIeM ciiydae JJisl CIIENHUAJbHBIX CATHATYD, BKJIIOYAs CUTHATYPY OIHOMECTHBIX
IPEeIUKATOB, TaK 1 JijIsi HEKOTOPBIX €CTECTBEHHBIX OIepalyii CO CTPYKTYpPaMu, BKJIIOYasd
JTU3BIOHKTHBIE OObEINHEHNUST M KOMIIO3UIINH CTPYKTYP. IloKa3aHbl BO3MOXKHBIE 3HAYEHUS
cTerieHell /ijIs pAJa eCTeCTBEHHBIX IIPUMEPOB, a TaKxKe JUHAMUKa CTelleHell IpU B3ATHU
paccMaTpUBaEMBbIX OIEepaIUii.

KirougeBbie ciioBa: onpeae/imMoe 3aMbIKaHUE, CEMaHTUYeCKasd 2KeCTKOCTb, CHHTaKCHU1e-
CKasd 2KECTKOCTb, CTEII€Hb 2KECTKOCTU
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1. Introduction

We continue to study variations of algebraic closures [10] considering
and describing semantic and syntactic possibilities for definable closures.

In Section 2, we introduce variations and degrees for semantic and syn-
tactic rigidity of structures, describe properties, possibilities, and dynamics
for these characteristics, in general and for theories of unary predicates.
In Section 3, indexes of rigidity are introduced and their possibilities are
described. In Sections 4 and 5, possibilities for degrees of rigidity and for
indexes of rigidity are described for disjoint unions of structures and for
compositions of structures are studied.

We use the standard model-theoretic terminology [3-6;11], notions and
notations in [10].

2. Variations of rigidity and their characteristics

Definition. For a set A in a structure M, M is called semantically
A-rigid or automorphically A-rigid if any A-automorphism f € Aut(M) is
identical. The structure M is called syntactically A-rigid if M = dcl(A).

A structure M is called V-semantically / V-syntactically n-rigid (re-
spectively, 3-semantically / 3-syntactically n-rigid), for n € w, if M is
semantically / syntactically A-rigid for any (some) A C M with |A| = n.

Clearly, as above, syntactical A-rigidity and n-rigidity imply semantical
ones, and vice versa for finite structures, but not vice versa for some infinite
ones. Besides, if M is @Q-semantically / Q-syntactically n-rigid, where
Q € {¥,3}, then M is @-semantically / Q-syntactically m-rigid for any
m>n.

The least n such that M is @-semantically / @Q-syntactically n-rigid,
where @ € {V,3}, is called the Q-semantical / Q-syntactical degree of

rigidity, it is denoted by degri;em(/\/l) and degff:ym (M), respectively. Here
if a set A produces the value of Q-semantical / @-syntactical degree then
we say that A witnesses that degree. If such n does not exists we put
deg7, """ (M) = oo and deggsynt(/\/l) = 00, respectively.

Notice that all these characteristics have the upper bound | M| — 1 if the
structure M is finite. Moreover, if M \ dcl(@) is finite then the cardinality

|M\dcl(0)|—1 is the upper bound for both deg?i‘gsem(./\/l) and degi_gSynt (M).
We have the following obvious characterizations for finite values of de-

grees:

Proposition 1. 1. deg/ 7™ (M) = 0 iff degiZ™ (M) = 0, and iff the
structure M is semantically rigid.
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2. degz_gsynt(./\/l) =0 iff degi_gsynt(/\/l) = 0, and iff the structure M is
syntactically rigid.

3. deg}ﬁ';em(M) =n € w iff for any set A C M with |A| > n there is
minimal B C A, under inclusion, such that |B| = n and any automorphism
f € Aut(M) fizing B pointwise fizes all elements in M, too, and there are
no sets of cardinalities n' < n with that property. Here B C A can be taken
arbitrary with |B| = n.

4. deg?i_gsem(./\/l) =n € w iff for some set A C M with |A| > n there is
minimal B C A, under inclusion, such that |B| = n and any automorphism
f € Aut(M) fizing B pointwise fizes all elements in M, too, and there are
no sets of cardinalities n’ < m with that property.

5. degz_gsynt(/\/l) =n € w iff for any set A C M with |A| > n there is
minimal B C A, under inclusion, such that |B| =n and M = dcl(B), and
there are no sets of cardinalities n' < n with that property. Here B C A
can be taken arbitrary with |B| = n.

6. degi_gsynt(/\/l) =n € w iff for some set A C M with |A| > n there is
minimal B C A, under inclusion, such that |B| =n and M = dcl(B), and

there are no sets of cardinalities n’ < n with that property.

By the definition, we have the following monotonicity property: if M is
semantically / syntactically A-rigid and A C A’ C M then M is semanti-
cally / syntactically A’-rigid.

Using the definition and the monotonicity property, for any structure
M the following inequalities hold:

degi=™ (M) < deg/ Y™ (M), (2.1)
the equality in (2.1) means that either there are no finite sets A with
identical A-automorphisms only, or minimal finite sets A with identical A-
automorphisms only have unbounded cardinalities, or all finite A C M of
some fixed cardinality n satisfy M = dcl(A) and some A with |A| = n does
not have proper subsets A’ such that there are identical A’-automorphisms
only;

deg 5™ (M) < deg Y™ (M), (2.2)

rig rig

the equality in (2.2) means that either there are no finite sets A with identi-
cal A-automorphisms only, or there is finite A C M such that M = dcl(A),
and there are no sets A’ with less cardinalities such that there are identical
A’-automorphisms only;

degriy®™ (M) < degiis™™ (M), (2:3)
the equality in (2.3) means that either there are no finite sets A with
identical A-automorphisms only, or there is finite A C M with identical
A-automorphism only and each finite A’ C M with |A’| > |A] has a
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minimal restriction A”, under inclusion, with |A”| = |A| and with identical
A"-automorphism only;
3- v-
degrigsynt(M) < degrigsynt(M)' (24)
the equality in (2.4) means that either there are no finite sets A with
dcl(A) = M, or there is finite A C M with dcl(A) = M and each finite
A" C M with |A’] > |A] has a minimal restriction A”, under inclusion, with

|A”| = |A| and with dcl(A”) = M.

Example 1. The structure M = (w, <) is both semantically and syn-

. .. V- 3- V-synt
tactically rigid, therefore degi;" (M) = degr;™" (M) = deg, ;" (M) =
degi_;ynt(/\/l) = 0. We observe the same effect for arbitrary structures in
which each element is marked by a constant.

Example 2. If M has the empty language then

deglze™ (M) = degZs™ (M) = dege™ (M) = degZ ™ (M) = |M] — 1

if M is finite, and and these values equal oo if M is infinite.

Example 3. If V is a vector space over a field F' then we have the following
criterion for the semantic/syntactic rigidity: deg’*™(V) = deg2s*™(V) =

deg\;-;ynt(w = degi'gsynt(V) =0iff dim(V) <1 andg\F\ = 2 for diri(V) =1.
If V is not rigid then degf'i';em V) = deg?i_gSynt (V) = dim(V) for finite dim(V),
and degrai';em(V) = degi—;ym()}) = 00, otherwise. Besides, degfi'gsem(V) =
degz_gsynt(V) = oo if dim(V) is infinite, or dim(V) > 1 and F is infinite.

Finally for dim(V) = n € w\{0} and |F| = m € w\{0} with (n,m) # (1, 2),
we have degfi'gsem(V) = degfi_;y "(V) = (n — 1)m + 1, since we obtain the
rigidity taking all vectors in a (n—1)-dimensional subspace V', with (n—1)m
elements, and a vector in V \ V'.

Example 4. Let M be a structure of disjoint infinite unary predicates P;,

i € I, expanded by constants for all elements in | J P;. Since M is both se-
i€l

mantically and syntactically rigid we have degri;em(./\/l) = deggg_synt (M) =

0 for @ € {V,3}. At the same time extending n predicates P; by new

elements a; we obtain N = M with degiF™(N) = degi?®™(N) = 0,

degigynt(/\f ) = mn, degz_gsynt(/\/' ) = oo. Moreover, if infinitely many P,

are extended by new elements a; then the correspondent elementary ex-

tension A of M has the following characteristics: deg?i';em(/\f "y =0,
degigynt(/\f ') = n and deg?i_gsem(/\/‘ ) = degz_gsynt(/\/’ "y = oo. Besides, if
some extended P; are again extended by m new elements in total then
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an appropriate elementary extension N, , has the following characteris-

tics: deg ™ (Ninm) = m, degi:;ynt(./\/'m,n) = m + n, degl P (Nnn) =

V-synt ( Nm'n) = oo including the possibility

degrig

degﬂ—sem (N#’n) —

rig
3- - v-
= deg i (Njun) = degi ™ (Njn) = deg/iy"™" (Nun) = 00

if 4 > w new elements are added.

Thus by Example 4 the difference between
3- J-synt
deggy ™" (M) and degri;y (M)

can be arbitrary large. In view of Proposition 1 and inequality 2.2 we
obtain the following theorem on distributions for these characteristics:
Theorem 1. 1. The pairs (degﬂ‘gsem(./\/l), degili_gSy nt(/\/l)) belong to the set
DEG ™7™ = {(1,v) | p,v € wU {o0}, u < v}.

2. For each pair (u,v) € DEGEi_gsem’zl_synt there exists a structure M, ,
such that

- 3-
degyy ™ (Myy) = p, degi™™ (My,) = v.

Example 4 shows that values in DEG?{;em’}Sym in Theorem 1 are covered

by structures in countable languages > of unary predicates. Now we

describe possibilities for the pairs (degﬁ'gsem(/\/l),degrvi:;ynt(/\/l)) in these

languages 1.
Proposition 2. For any structure M in a language 31 of unary predicates
the pair

(g™ (M), degf™™ (M)

rig rig

has one of the following possibilities:

1) (0,0), if M is both semantically and syntactically rigid;

2) (n,n), if M is finite with n + 1 elements and it is not semantically
rigid that is not syntactically rigid;

3) (0,00), if M is infinite, semantically rigid but not syntactically rigid;

4) (00,00), if M is infinite and both not semantically rigid and not
syntactically rigid.

Proof. If M is syntactically rigid then we have

(degfzem (M), degly™ (M) = (0.0)

rig rig

by the inequality (2.1). Now we assume that M is not syntactically rigid
and consider the following cases.
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Case 1: M is semantically rigid, i.e., degz'gsem(M) = 0. In such a
case M is infinite since finite structures have isolated 1-types only and
there are complete 1-types over empty set with at least two realizations
that contradicts the semantic rigidity for the language ;. Again using
the unary language ¥; and the arguments of [2, Section 8.1] that all 1-
types, over empty set, are forced by formulae of quantifier free diagrams
and formulae describing estimations for cardinalities of their solutions, with
independent actions of automorphisms in distinct sets of realizations of 1-
types. Thus each 1-type has at most one realization in M. Since M is not
syntactically rigid, M realizes at least one nonisolated 1-type p(x) by some
unique element a. Now for any n € w we can take n realizations of other
1-types forming a set A such that a ¢ dcl(A). It implies degfi_;y (M) = oco.

Case 2: M is not semantically rigid and |[M| =n+1 € w. In such a
case M has a complete 1-type p(z) with at least two realizations a and b.
Since there is an (M \ {a,b})-automorphism f with f(a) = b, we obtain
degfi'gsem(/\/l) = n implying degﬁ;ynt(/\/l) = n by the inequality (2.1) and
the syntactic rigidity of M over each n-element set.

Case 3: M is not semantically rigid and it is infinite. In such a case
M has a complete 1-type p(z) with at least two realizations a and b and
such that realizations of other 1-types allow to form arbitrarily large finite
set A such that some A-automorphism transforms a in b. It means that

degfi'gsem(/\/l) = oo implying degfi_gsy "(M) = oo by the inequality (2.1).

Combining arguments for Theorems 1 and 2 we obtain the following
possibilities for tetrads

degy(M) = (degmz*™ (M), deg ™ (M), degii*™ (M), deg[™ (M)

rig ) rig rig ’ rig
in a language of unary predicates:

Corollary 1. For any structure M in a language X1 of unary predicates
the tetrad deg,(M) has one of the following possibilities:

1) (0,0,0,0), if M is both semantically and syntactically rigid;

2) (m,m,n,n), if M is finite with n + 1 elements and it is not seman-
tically rigid that is not syntactically rigid with some minimal m-elements
set AC M, 1<m <n, producing dcl(A) = M;

3) (0,v,0,00), if M is infinite, semantically rigid but not syntactically
rigid, with 1 < v < ooy

4) (p,v,00,00), if M is infinite and both not semantically rigid and not
syntactically rigid, with 1 < p < v < oo.

Example 5. Let M be a finitely generated algebra by a set X. Then by

the definition we have degi_gsynt(./\/l) < |X| which implies degi'gsem(/\/l) <

|X| by the inequality (2.2). Here, if additionally the generating set X
admits substitutions by any Y C M with |Y| = | X| and these substitutions
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preserve the generating property then we have degfi_gsy (M) < |X| which

implies deg?i'gsem(./\/l) < |X| by the inequality (2.1). For instance, if M is
a directed graph forming a finite cycle of positive length then deg,(M) =
(1,1,1,1).

Since algebras, with constants and unary operations, can define arbitrary
configurations of unary predicates, possibilities for characteristics deg, (M)

in Corollary 1 can be realized in the class of algebras, too.

Example 6. Let pm = pm(G1,Ga,P) be a connected polygonometry of
a group pair (G1,G2) on an exact pseudoplane P, and M = M(pm) be
a ternary structure for pm [7]. Since all points a in M are connected by
automorphisms we have acl({a}) = {a}. At the same time any two distinct
points a,b € M(pm) (laying in a common line) define all points in M by
line and angle parameters of broken lines. It implies M (pm) = dcl({a, b}).
If line and angle parameters of shortest broken lines connecting arbitrary
distinct points a and b are defined uniquely then M (pm) = dcl({a, b}) for

these points, too. Hence, in such a case, degfi';em(/\/l) = degfi_;ynt(/\/l) =

degfi'gsem(/\/l) = degz_gsynt(./\/l) < 2. Moreover, these degree values equal 1
iff pm consists of unique line and with at least two points, i.e., |G1| > 1
and |G| = 1. Finally, for a polygonometry pm, the degrees equal 0 iff pm
consists of unique point.

If parameters of broken lines do not define these broken lines by end-
points then finite cardinalities of points in these lines can be unbounded.
Indeed, taking opposite vertices a and b in an n-cube [7;8] or in its poly-
gonometry pm we obtain n adjacent vertices ci,...,c, for a and these

vertices are connected by {a, b}-automorphisms. Moreover, in such a case,
degrs™ (M) = degfi_gsynt(./\/l) = n + 1 witnessed, for instance, by the set
A= {CL, b, Cly... ,Cnfl}.

The value degy(Mas) = (2,2,2,2) for My = M(pm) can be increased
till degy,(M,,) = (n,n,n,n), n > 3, generalizing group trigonometries in
the following way. We construct a (n + 1)-dimensional space consisting of
points and n-dimensional hyperplanes. We introduce an incidence n-ary
relation I,, for n distinct points to lay on a common hyperplane. Now
fixing a hyperplane H and n — 1 pairwise distinct points a1,...,a,_1 € H
we define an exact transitive action of a group G; on H\{a1,...,an—1}, i.e.,
on H with respect to aq,...,a,—1, such that this action is transformed for
any pairwise distinct points af,...,al,_; € H. Since each H can be defined
by its n — 1 distinct points with actions, we can fix aq,...,a,—1 and move
an € H\{ai,...,an—1} into points a;, in other hyperplanes H' containing
ai,...,ap—1. Collecting these movements we define an action of a group
G5 on that bundle of hyperplanes containing a1, ..., a,—1. Then we spread
actions of G; and G4 for any hyperplanes and bundles of hyperplanes,
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respectively, such that all pairwise distinct aq,...,a,—1 and af,...,al,_,
are connected by automorphisms with respect to these actions.

For instance, taking the set P of planes in R3, a plane 7 € P and distinct
points ay,as € P the action of (G; can be defined as R x A with the side
group R and angle group A defining both the directed distance d € R from
a1 to a point a3 € m and the angle value « from the side a;'as to the side
ai’az. And Gy is the rotation group for the planes in P around the lines
l(ay,asz).

Now we extend the language {I,,} by (n+1)-ary predicates Qq,, g1 € G1,
such that first (n — 1)-coordinates @ in (a@,b,c) € @, are exhausted by

ai,...,an—1 and ¢ = bg; with respect to aq,...,a,—1. Simultaneously we
define predicates Ry,, go € Go, of arities n+1 such that each Ry, realizes a
rotation of a hyperplane with respect to a1, ..., a,—1 by the element go. We

obtain a structure M,, whose values degri;em(/\/ln) and deggg_synt(/\/ln), for
Q € {V¥,3} equal n.

The construction above admits a generalization for polygonometries
pm(G1, Go, P) of group pairs transforming (G1,G2) a pseudoplane P to
a pseudospace S with hyperplanes H such that H = dcl({ay,...,a,}) for
any pairwise distinct points ay,...,a, € H and with dcl({b1,...,bp—1}) =
{b1,...,bp—1} for any by,...,b,—1 € S.

Comparing characteristics deg?i_gsem(/\/l) / degrai_gsynt(/\/l) and deg}’;;em (M)

/ deg?i_gsy][1t (M) we observe that the first ones produce cardinalities of “best”,
i.e., minimal sets generating the structure M and the second ones give car-
dinalities of “worst” generating sets. It is natural to describe possibilities
of “intermediate” generating sets. For this aim we define the degrees of

rigidity with respect to a subset A of M as follows:

Definition. For a set A in M and an expansion M 4 of M by constants
in A, the least n such that My is Q-semantically / Q-syntactically n-rigid,
where @ € {V, 3}, is called the (Q, A)-semantical / (Q, A)-syntactical degree

of rigidity, it is denoted by deggésflm(/\/l) and deggési;m(/\/l), respectively. If

such n does not exists we put degfi?g_’sim(./\/l) = oo and deggsint(./\/l) = 00,
respectively.

Any expansion M4 of M with degfi:; (My) =0, for s € {sem, synt}, is
called a s-rigiditization or simply a rigiditization of M.

We have the following properties for (@, A)-semantical and (Q, A)-syn-
tactical degrees of rigidity:

Proposition 3. Let M be a structure, ACM, Q€ {V,3}, s € {sem, synt}.
Then the following assertions hold:
1. (Preservation of degrees of rigidity) If A C dcl(()) then degfi?;(./\/l) =

degg;A (M).
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(Rigldltlzatlon) If A contains a witnessing set for the finite value
degrlg (M) then degrlg A(M) = 0.
3. (Monotony) If AC B C M then degngA(M) > degrlg 5(M).
4. (Addltwlty) If A witnesses the finite value degng (M) then for any
ACA
degrlg (M) - degrlg Al (M) + degrlg A\A’(M)
5. (Cofinite character) If A is cofinite in M then deg>S"(M) and

rig,A
degi';}z“(/\/() are natural.
6. (Finite rigiditization) Any cofinite set A in M has a minimal finite

extension A" such that My is semantically / syntactically rigid.

Proof. 1. If A C dcl(0) then Aut(M) = Aut(My) and therefore the
equalities deg,"(M) = deg“gA(./\/l) hold for s = sem. For the case s =
synt the required equalities are satisfied in view of dcl(B) = dcl(AU B) for
any B C M.

2. If A contains a witnessing set for the finite value degfi_gscm(./\/l) then

there exists identical A-automorphism of M only implying deg?i';%m (M) =

0. Similarly if A contains a witnessing set for the finite value degi_gsynt (M)
then dcl(A) = M producing degi_;}glt (M) =0.

3. If AC B C M then Aut(Mp) < Aut(M4) therefore the inequalities
degngA(M) > degngB(./\/l) hold for s = sem. For the case s = synt the
required equalities are satisfied in view of dcl(A U C) C del(B U C) for any
CCM.

4. If A witnesses the finite value degng (M) then we divide A into
two disjoint parts A1 and Az and by the definition of degy, (M), both A;
and Ay are extended till minimal A witnessing the semantic / syntactic
rigidity. Thus A; witnesses the value degX**™(M,) and A, witnesses

rig
J-sem

the value deg;, (My4,) producing the required equation degrlg M) =
degrlg A’ (M) + degrlg A\A’ (M)

5. If A is cofinite in M then there are only finitely many elements, all in
M \ A, witnessing the values degflgf%m(M) and deg?igiﬁlt(/\/l). Thus these
values are natural.

6. It is immediately implied by Items 2 and 5.

In view of Proposition 3 fixing a subset in M large enough we ob-
tain its rigiditization. At the same time the following assertion clarifies
that small subsets can produce the rigiditization for structures in bounded
cardinalities only.

Proposition 4. 1. If degi'gsynt(./\/l) is finite then |M| < max{X(M),w}.

1. If M is homogeneous and degi—;em(./\/l) is finite then

|M’ < 2maX{E(M),w}.
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Proof. 1. If degrai_gsynt(M) is finite then there is a finite set A C M
witnessing that value, with M = dcl(A). This equality is witnessed by at
most by max{X(M),w} formulae such that each element in M is defined
by a formula in the language (M 4). Since there are max{3(M),w}
(M 4)-formulae we obtain at most max{3(M),w} elements in M.

2. If a finite set A C M witnesses the finite value deg?i_gsem(/\/l) and M
is homogeneous possibilities for A-automorphisms fixing elements of M are
exhausted by single realizations of types in S*(A). Since there are at most
omax{X(M)w} these types that value is the required upper bound for the

cardinality of semantically rigid structure M 4.

Proposition 4 immediately implies the following;:

Corollary 2. 1. If deg;¥{"(M) is finite then |M| < max{~(M), | A, w}.

1. If M is homogeneous and deg?i'gfzm(/\/l) is finite then

|M| < 2max{Z(M),\A\,w}'

3. Indexes of rigidity

Definition. For a set A in a structure M the index of rigidity of M
over A, denoted by ind,ig(M/A) is the supremum of cardinalities for the
set of solutions of algebraic types tp(a/A) for a € M. We put ind,ig(M) =
ind,ig(M/0). Here we assume that ind,g(M) = 0 if M does not have
algebraic types tp(a) for a € M.

Remark 1. By the definition we have indjg(M/A) € w + 1.

Example 7. 1. If M is a structure of unary predicates P;, i € I, then
ind,ig (M) = 0 iff there are no finite nonempty intersections PZ-‘Sl1 n... OP;Z’“ ,
01,...,0, € {0,1}. We have ind,jg(M) = 1 iff dcl(0) # 0 and there are
no maximal finite intersections P;Sll N...N Pf’“ with at least two elements.
Besides, ind,ig (M) € w iff these finite intersections have bounded cardinal-
ities, and all natural possibilities n are realized by predicates with exactly
n elements and infinite complements. Otherwise, i.e., for indyz(M) = w,
these finite intersections have unbounded cardinalities.

2. If M is a structure of an equivalence relation F, then indyg(M) =0
iff there are no finite E-classes. We have indg(M) = 1 iff dcl() # 0
and there are no finite FE-classes with at least two elements. Besides,
ind,ig(M) € w iff these E-classes have bounded cardinalities, and all natural
possibilities n are realized by infinitely many FE-classes with exactly n ele-
ments. Otherwise, i.e., for ind,ig(M) = w, these E-classes have unbounded
cardinalities.
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3. If M = M(pm) for a polygonometry pm then ind,jz(M) = 0 iff
pm has infinitely many points. Otherwise, if pm has n € w points then
indig(M) = n.

More generally, we have the following possibilities for a model M of
transitive theory T, i.e., of a theory with |S1()| = 1:

i) indyig(M) = 0, if M is infinite;

ii) indig(M) = | M|, if M is finite.

In view of Remark 1 the following assertion describes possibilities of
indexes of rigidity:

Proposition 5. For any A € w + 1 there is a structure M) such that
indrig(./\/l)\) = A

Proof follows by Example 7.

4. Variations of rigidity for disjoint unions of structures

Definition [12]. The disjoint union || M, of pairwise disjoint struc-
new
tures M,, for pairwise disjoint predicate languages >,, n € w, is the

structure of language |J %, U {P,(ll) | n € w} with the universe || M,
new new
P, = M, and interpretations of predicate symbols in 3, coinciding with

their interpretations in M,,, n € w. The disjoint union of theories T, for
pairwise disjoint languages ¥.,, accordingly, n € w, is the theory

|_|Tn:Th<|_|Mn>,
new new
where M,, ET,,, n € w.

Theorem 2. For any disjoint predicate structures My and My, and s €
{sem, synt} the following conditions hold:
1. degrlg (MiUMy) = degrlg (My) + degrlg (M), in particular,

degng (My U My)

is finite iff degng (My) and degng (May) are finite.

2. deglif (M1 U Msz) = 0 iff degli(M1) = 0 and degrlg (Mg2) =0.

3. If degrlg (Mq U May) >0 then it is finite iff degrlg (M) > 0 is finite
and My is finite, or degng (Msz) > 0 is finite and M is finite. Here,

degrlg (Ml U M2) max{’Ml‘ + degrlg ( ) ‘MQ, + degmg (Ml)}
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Proof. 1. Let A; C M, be sets witnessing values degrlg (M;),i=1,2. By
the definition of M U My, A1 and As are disjoint and Ay U Ag witnesses
the value degrlg (M U My). Thus degrlg (MU My) = degrlg (My) +
degrlg (MQ)

2. If degrlg (MU Ms) = 0 then the empty set witnesses that Mj LMo,
M1 and Mj are s-rigid, i.e., rigid with respect to s, implying degrlg (My) =

0 and degng (M3) = 0. Conversely, if degng (M;) =0 and degng (M3)=0
then the empty set witnesses that M; and My are s-rigid. Now by the
definition of M; LI My we observe that Mj LI My is s-rigid, too, implying
degmg (./\/ll U Mg) =0.

3. Let deg)i;’ (M1 LU Mz) > 0 be finite, then by Item 2, deg/f(M1) > 0

or degrlg (M3z) > 0. Assuming that degrlg (M;) > 0 we can not witness that
value by subsets of M3_;, 1 = 1,2. Thus Ms3_; should be finite. Conversely,
let degrlg (M7) > 0 be finite and M be finite, or degzgs(/\/lg) > 0 be finite
and M be finite. Then we can take degrlg (M) elements of M; and all
elements of Ms obtaining the s-rigidity of MU Msy. Similarly we can take

degrlg (M3) elements of My and all elements of M; obtaining the s-rigidity
of My U My, too. Thus, the finite value max{|M;| + degng (Ma), | Ma| +

deg?lgs (M 1 ) } equals degzgs (M 1y M2)

Theorem 2 and Corollary 1 immediately imply:

Corollary 3. For any structures My and Ms in a language X1 of unary
predicates the tetrad deg,(Mj U Mag) has one of the following possibilities:

1) (0,0,0,0), if M1 and Ma are both semantically and syntactically
rigid;

2) (m,m,n,n), if My and My are finite with | My U Ms| = n+1 elements
and some M; is not semantically rigid that is not syntactically rigid with
some minimal my-elements set A1 C My producing dcl(Ay) = M; and
some minimal ma-elements set Ay C Ma producing dcl(Az) = M, where
m=mi+mo <n-—1;

3) (0,v,0,00), if M1 U My is infinite, My and Mas are semantically
rigid but some of them is not syntactically rigid, with 1 < v < o0, v =
degmgynt(/\/l )+ degrlg (M) ;

4) (p,v,00,00), if My U My is infinite, My or Ms is not semantically
rigid, My or May is not syntactically rigid, with 1 < p < v < 00, p =
degi=™ (M) + degl®™ (M), v = degi "™ (M) + deg ™ (M)
Theorem 3. For any disjoint predicate structures My and My, and a set
A C My U M,
indrig((./\/ll UMQ)/A) = max{indrig(Ml/(Ml ﬂA)), indrig(Mg)/(Mg ﬂA)}

Proof. By the definition of disjoint union types in S'(A) are locally
realized either in M or in My. Moreover, they are forced by their re-
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strictions to M; or M. So algebraic types p(z) € S'(A) are defined
in My or in My by their restrictions to M; N A and to Ms N A. Now
we collect possibilities for cardinalities of sets of realizations of algebraic
types in SY(M; N A) and in S'(Mz N A). We either choose a maximal
natural cardinality obtaining natural n = indz((M; U Mag)/A) with n =
max{indyig (M1 /(M1 N A)),indyig(Maz)/(MaN A)} or there are no maximal
natural cardinality with both ind,is((M1 LU M3)/A) = w and

max{indrig(Ml/(Ml N A)), indrig(Mg)/(Mg N A)} = w.

5. Variations of rigidity for compositions of structures

Recall the notions of composition for structures and theories.

Definition [1]. Let M and A be structures of relational languages
Yam and Xpr respectively. We define the composition M|N] of M and N
satisfying the following conditions:

1) EM[J\/] =XmUXpN;

2) M[N] = M x N, where M[N], M, N are universes of M[N], M, and
N respectively;

3) if R € Xpm \ Xy, p(R) = n, then ((a1,b1), ..., (an,bn)) € Rpyqpg if
and only if (aq,...,a,) € Rag;

4)if R € Yy \ X¥m, u(R) = n, then ((a1,b1),. .., (an,bn)) € Raqg if

and only if ay = ... = a, and (by,...,by,) € Rps;
5)if R € Xy N En, u(R) = n, then ((a1,b1),...,(an,bn)) € Raqn if
and only if (ay,...,an) € Rpm, 0r a1 = ... =ay and (by,...,b,) € Ry

The theory T = Th(M|N]) is called the composition Ti[Ts] of the
theories 71 = Th(M) and Ty = Th(N).

By the definition, the composition M[N] is obtained replacing each
element of M by a copy of N.

Definition [1]. The composition M[N] is called E-definable if M[N]
has an (-definable equivalence relation F whose E-classes are universes of
the copies of N forming M[N].

Remark 2. It is shown in [1] that E-definable compositions M[N]
uniquely define theories Th(M[N]) by theories Th(M) and Th(N') and
types of elements in copies of N are defined by types in these copies and
types for connections between these copies.

Proposition 6. For E-definable compositions M|N| the automorphism
group Aut(M[N]) is isomorphic to the wreath product of Aut(M) and
Aut(N):

Aut(M[N]) =~ Aut(M)  Aut(N).
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Proof. Since all copies of N are isomorphic in M[N] and form de-
finable E-classes each automorphism f € Aut(M[N]) is defined both by
the action on the set of E-classes, which corresponds to an automorphism
g € Aut(M), and by the the actions on the E-classes, which corresponds to
an automorphism h for copies of N'. Therefore f is situated in the one-to-
one correspondence with the pair (g, h) producing a correspondent element

of Aut(M) ¢t Aut(N).
In view of Remark 2 and Proposition 6 we have the following:

Theorem 4. For any E-definable composition M[N] the following condi-
tions hold:
degﬂ—sem(M [N]) — degﬂ—sem(M)’

rig rig
if N is semantically rigid, and
degZee™(MIN]) = [M] - degZz™ (V),

rig rig
if N is not semantically rigid. In particular, degi';em(./\/l[./\/]) is finite iff
degrai';em(./\/l) and N are finite, if N is semantically rigid, and degi—gsem(./\/‘)
and M are finite, if N is not semantically rigid.

Proof. If A is semantically rigid then it suffices to find possibilities
for automorphisms of M since in such a case the semantical rigidity of
an inessential expansion of M implies the semantical rigidity of corre-
spondent inessential expansion of M|N]. Thus, here degrai:;em(./\/l[/\/]) =
degi'gsem(/\/l). If N is not semantically rigid then copies of N' in M|N]
are automorphically independent, i.e., fixing automorphisms for M[AN] one
have to fix all automorphisms for these copies. Since the smallest set fixing
automorphisms for A/ contains deg?i';em (N), we have at least and minimally
at most | M| -degfi'gsem (N) elements to fix automorphisms for M|N] implying
deg;z ™™ (MIN]) = [M] - deggi2™™ (N).

Theorem 5. For any E-definable composition M|N| the following condi-
tions hold:

deg "™ (MIN]) = deg ¥ (M),
if N = dcl(0), and

deg " (MIN]) = [M] - deg ™ (N,

if N # dcl(0). In particular, degi—gsym(./\/l INY) is finite iff degi—gsynt(/\/l)
and N are finite, for N = dcl(0), and degij;ynt(./\/') and M are finite, for
N # dcl(0).

Proof repeats the proof of Theorem 4 replacing automorphism groups
by definable closures.

Proposition 1, (1), (2) and Theorems 4, 5 immediately imply:
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Corollary 4. For any E-definable composition M[N] and s € {sem, synt}
the follawmg conditions are equivalent:

( ) degrlg (M[M) - 0
(2) degng (M) =0 and degng (N) =0.

Theorem 6. For any s € {sem,synt} and E-definable composition M|N]
with
deg)i (MIN]) > 0

the followmg conditions are equivalent:
(1) deg?s (MIN]) is finite;
(2) one of the following conditions hold:
i) M and N are finite, i.e. MIN] is finite;
ii) M is infinite with degrlg (M) =1 and degrlg (N) =0;
iii) M s infinite and N s finite with deg]rlg (M) € w)\ {0,1} and
degrlg (N) - 0
iv) M is a singleton and N is infinite with degrlg (N) e w\ {0}.
Here there are the followmg possibilities:
a) deglif (MIN]) = (deglii(M) — 1) - [N| + 1, if the case i) or iii) is
satisfied with degrlg (NV) = 0;
b) degrlg (MIN]) =(|IM|—1)-|N| +degng (N), if the case 1) is satisfied
with degrlg (N) >0;
c) degng (M[N]) =1, if the case ii) is satisfied;
d) degng (MIN)) = degrlg (N), if the case iv) is satisfied.

Proof. At first we notice that degrlg (M) >0or degrlg (N) > 0 in view
of Corollary 4.

Now by the definition M[A/] is finite iff M and A are finite. In such a
case we have the followmg possibilities:

o degl S (M[N]) = (degli (M) — 1) - [N|+ 1, if degli*(N) = 0, since the
rigidity of M[N] can be achieved here taking all elements in degrlg M)—1
copies of N with one additional element witnessing the degree deg]rlg (M)

defining rigidly all E-classes for copies of A" which are rigid by degrlg (N)
0; it corresponds the case i) with a);

o degl (MIN]) = (IM] — 1) - [N] + deglis (V). if deglyr (V) > 0, since
the rigidity of M[N] can be achieved here taking all elements in (|M|— 1)
copies of N with deg/.*(A) additional elements in the last copy of N; it
corresponds the case 1) with b).

(1) = (2). Let degfi,5(M[N]) > 0 is finite. We can assume that M is
infinite or AV is infinite. We have the following possibilities:

o deglif(M) = 1 and deg};*(N) = 0, that is any element of M[N/] rigidly

defines its E-class and all E-classes, too, by degrlg (M) =1, such that all
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copies of N in these E-classes are rigid by degrlg (N) = 0; it corresponds
the case 11) with ¢);

. degrlg (M) € w\ {0,1} and degrlg (N) = 0; here we require that N
is finite, since otherwise we can take arbitrary many elements in some F-
classes which do not imply the rigidity in view of degmg (M) > 2; here we
have the case iii) with a).

o M is a singleton and N is infinite with deg*(NV) € w\ {0}, here

degmg (M) =0, M[N] ~ N and therefore degrlg (MIN]) = deg]rlg (N).

If AV is infinite with degrlg (N) € w\ {0} and |M] > 2 then we can not
obtain the rigidity for all F-classes taking arbitrary many elements in some
E-classes that contradicts the condition degrlg (MN]) € w.

(2) = (1). Since each finite structure has finite degrees of rigidity it
suffices to show that degng (M[N]) is finite if M is infinite or N is infinite
with the conditions ii), iii), iv). We observe that ii) implies ¢), iii) implies
a), and iv) implies d) confirming a finite value of that degree.

6. Conclusion

We studied possibilities for the degrees and indexes of rigidity, both for
semantical and syntactical cases. Links of these characteristics and their
possible values are described. We studied these values and dynamics for
structures in some languages, for some natural operations including disjoint
unions and compositions of structures. A series of examples illustrates
possibilities of these characteristics. It would be interesting to continue
this research describing possible values of degrees and indexes for natural
classes of structures and their theories.
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