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Abstract. One of the main derived objects of a given structure is its automorphism
group, which shows how freely elements of the structure can be related to each other
by automorphisms. Two extremes are observed here: the automorphism group can
be transitive and allow any two elements to be connected to each other, or can be
one-element, when no two different elements are connected by automorphisms, i.e., the
structure is rigid. The rigidity given by a one-element group of automorphisms is called
semantic. It is of interest to study and describe structures that do not differ much from
semantically rigid structures, i.e., become semantically rigid after selecting some finite
set of elements in the form of constants. Another, syntactic form of rigidity is based
on the possibility of getting all elements of the structure into a definable closure of the
empty set. It is also of interest here to describe “almost” syntactically rigid structures,
i.e., structures covered by the definable closure of some finite set. The paper explores the
possibilities of semantic and syntactic rigidity. The concepts of the degrees of semantic
and syntactic rigidity are defined, both with respect to existence and with respect to the
universality of finite sets of elements of a given cardinality. The notion of a rigidity index
is defined, which shows an upper bound for the cardinalities of algebraic types, and its
possible values are described. Rigidity variations and their degrees are studied both in the
general case, for special languages, including the one-place predicate signature, and for
some natural operations with structures, including disjunctive unions and compositions
of structures. The possible values of the degrees for a number of natural examples are
shown, as well as the dynamics of the degrees when taking the considered operations.
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Научная статья
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Аннотация. Отмечено, что одним из основных производных объектов данной стру-
ктуры является ее группа автоморфизмов, показывающая насколько свободно эле-
менты структуры могут быть между собой связаны автоморфизмами. Здесь наблю-
даются две крайности: группа автоморфизмов может быть транзитивной и позво-
ляющей связывать между собой любые два элемента, или одноэлементной, когда
никакие два различных элемента не связаны между собой автоморфизмами, т.е.
структура является жесткой. Жесткость, задаваемая одноэлементной группой авто-
морфизмов, называется семантической. Представляет интерес изучение и описание
структур, которые несильно отличаются от семантически жестких структур, т.е.
становятся семантически жесткими после выделения некоторого конечного множе-
ства элементов в виде констант. Другой, синтаксический вид жесткости основан
на возможности попадания всех элементов структуры в определимое замыкание
пустого множества. Здесь также представляет интерес описания «почти» синтак-
сически жестких структур, т.е. структур, покрываемых определимым замыканием
некоторого конечного множества. В работе изучены возможности семантической и
синтаксической жесткости. Рассмотрены понятия степени семантической и синтак-
сической жесткости как относительно существования, так и относительно всеобщно-
сти конечных множеств элементов заданной мощности. Определено понятие индекса
жесткости, показывающее верхнюю оценку для мощностей алгебраических типов, и
описаны его возможные значения. Исследованы вариации жесткости и их степеней
как в общем случае для специальных сигнатур, включая сигнатуру одноместных
предикатов, так и для некоторых естественных операций со структурами, включая
дизъюнктные объединения и композиции структур. Показаны возможные значения
степеней для ряда естественных примеров, а также динамика степеней при взятии
рассматриваемых операций.

Ключевые слова: определимое замыкание, семантическая жесткость, синтаксиче-
ская жесткость, степень жесткости
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1. Introduction

We continue to study variations of algebraic closures [10] considering
and describing semantic and syntactic possibilities for definable closures.

In Section 2, we introduce variations and degrees for semantic and syn-
tactic rigidity of structures, describe properties, possibilities, and dynamics
for these characteristics, in general and for theories of unary predicates.
In Section 3, indexes of rigidity are introduced and their possibilities are
described. In Sections 4 and 5, possibilities for degrees of rigidity and for
indexes of rigidity are described for disjoint unions of structures and for
compositions of structures are studied.

We use the standard model-theoretic terminology [3–6;11], notions and
notations in [10].

2. Variations of rigidity and their characteristics

Definition. For a set 𝐴 in a structure ℳ, ℳ is called semantically
𝐴-rigid or automorphically 𝐴-rigid if any 𝐴-automorphism 𝑓 ∈ Aut(ℳ) is
identical. The structure ℳ is called syntactically 𝐴-rigid if 𝑀 = dcl(𝐴).

A structure ℳ is called ∀-semantically / ∀-syntactically 𝑛-rigid (re-
spectively, ∃-semantically / ∃-syntactically 𝑛-rigid), for 𝑛 ∈ 𝜔, if ℳ is
semantically / syntactically 𝐴-rigid for any (some) 𝐴 ⊆𝑀 with |𝐴| = 𝑛.

Clearly, as above, syntactical 𝐴-rigidity and 𝑛-rigidity imply semantical
ones, and vice versa for finite structures, but not vice versa for some infinite
ones. Besides, if ℳ is 𝑄-semantically / 𝑄-syntactically 𝑛-rigid, where
𝑄 ∈ {∀,∃}, then ℳ is 𝑄-semantically / 𝑄-syntactically 𝑚-rigid for any
𝑚 ≥ 𝑛.

The least 𝑛 such that ℳ is 𝑄-semantically / 𝑄-syntactically 𝑛-rigid,
where 𝑄 ∈ {∀,∃}, is called the 𝑄-semantical / 𝑄-syntactical degree of

rigidity, it is denoted by deg𝑄-semrig (ℳ) and deg𝑄-syntrig (ℳ), respectively. Here

if a set 𝐴 produces the value of 𝑄-semantical / 𝑄-syntactical degree then
we say that 𝐴 witnesses that degree. If such 𝑛 does not exists we put
deg𝑄-semrig (ℳ) = ∞ and deg𝑄-syntrig (ℳ) = ∞, respectively.

Notice that all these characteristics have the upper bound |𝑀 |−1 if the
structure ℳ is finite. Moreover, if 𝑀 ∖ dcl(∅) is finite then the cardinality

|𝑀 ∖dcl(∅)|−1 is the upper bound for both deg∃-semrig (ℳ) and deg∃-syntrig (ℳ).
We have the following obvious characterizations for finite values of de-

grees:

Proposition 1. 1. deg∀-semrig (ℳ) = 0 iff deg∃-semrig (ℳ) = 0, and iff the
structure ℳ is semantically rigid.
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2. deg∀-syntrig (ℳ) = 0 iff deg∃-syntrig (ℳ) = 0, and iff the structure ℳ is
syntactically rigid.

3. deg∀-semrig (ℳ) = 𝑛 ∈ 𝜔 iff for any set 𝐴 ⊆ 𝑀 with |𝐴| ≥ 𝑛 there is
minimal 𝐵 ⊆ 𝐴, under inclusion, such that |𝐵| = 𝑛 and any automorphism
𝑓 ∈ Aut(ℳ) fixing 𝐵 pointwise fixes all elements in ℳ, too, and there are
no sets of cardinalities 𝑛′ < 𝑛 with that property. Here 𝐵 ⊆ 𝐴 can be taken
arbitrary with |𝐵| = 𝑛.

4. deg∃-semrig (ℳ) = 𝑛 ∈ 𝜔 iff for some set 𝐴 ⊆ 𝑀 with |𝐴| ≥ 𝑛 there is
minimal 𝐵 ⊆ 𝐴, under inclusion, such that |𝐵| = 𝑛 and any automorphism
𝑓 ∈ Aut(ℳ) fixing 𝐵 pointwise fixes all elements in ℳ, too, and there are
no sets of cardinalities 𝑛′ < 𝑛 with that property.

5. deg∀-syntrig (ℳ) = 𝑛 ∈ 𝜔 iff for any set 𝐴 ⊆ 𝑀 with |𝐴| ≥ 𝑛 there is

minimal 𝐵 ⊆ 𝐴, under inclusion, such that |𝐵| = 𝑛 and 𝑀 = dcl(𝐵), and
there are no sets of cardinalities 𝑛′ < 𝑛 with that property. Here 𝐵 ⊆ 𝐴
can be taken arbitrary with |𝐵| = 𝑛.

6. deg∃-syntrig (ℳ) = 𝑛 ∈ 𝜔 iff for some set 𝐴 ⊆ 𝑀 with |𝐴| ≥ 𝑛 there is

minimal 𝐵 ⊆ 𝐴, under inclusion, such that |𝐵| = 𝑛 and 𝑀 = dcl(𝐵), and
there are no sets of cardinalities 𝑛′ < 𝑛 with that property.

By the definition, we have the following monotonicity property: if ℳ is
semantically / syntactically 𝐴-rigid and 𝐴 ⊆ 𝐴′ ⊆ 𝑀 then ℳ is semanti-
cally / syntactically 𝐴′-rigid.

Using the definition and the monotonicity property, for any structure
ℳ the following inequalities hold:

deg∀-semrig (ℳ) ≤ deg∀-syntrig (ℳ), (2.1)

the equality in (2.1) means that either there are no finite sets 𝐴 with
identical 𝐴-automorphisms only, or minimal finite sets 𝐴 with identical 𝐴-
automorphisms only have unbounded cardinalities, or all finite 𝐴 ⊆ 𝑀 of
some fixed cardinality 𝑛 satisfy 𝑀 = dcl(𝐴) and some 𝐴 with |𝐴| = 𝑛 does
not have proper subsets 𝐴′ such that there are identical 𝐴′-automorphisms
only;

deg∃-semrig (ℳ) ≤ deg∃-syntrig (ℳ), (2.2)

the equality in (2.2) means that either there are no finite sets 𝐴 with identi-
cal 𝐴-automorphisms only, or there is finite 𝐴 ⊆𝑀 such that 𝑀 = dcl(𝐴),
and there are no sets 𝐴′ with less cardinalities such that there are identical
𝐴′-automorphisms only;

deg∃-semrig (ℳ) ≤ deg∀-semrig (ℳ), (2.3)

the equality in (2.3) means that either there are no finite sets 𝐴 with
identical 𝐴-automorphisms only, or there is finite 𝐴 ⊆ 𝑀 with identical
𝐴-automorphism only and each finite 𝐴′ ⊆ 𝑀 with |𝐴′| ≥ |𝐴| has a
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minimal restriction 𝐴′′, under inclusion, with |𝐴′′| = |𝐴| and with identical
𝐴′′-automorphism only;

deg∃-syntrig (ℳ) ≤ deg∀-syntrig (ℳ). (2.4)

the equality in (2.4) means that either there are no finite sets 𝐴 with
dcl(𝐴) = 𝑀 , or there is finite 𝐴 ⊆ 𝑀 with dcl(𝐴) = 𝑀 and each finite
𝐴′ ⊆𝑀 with |𝐴′| ≥ |𝐴| has a minimal restriction 𝐴′′, under inclusion, with
|𝐴′′| = |𝐴| and with dcl(𝐴′′) =𝑀 .

Example 1. The structure ℳ = ⟨𝜔,≤⟩ is both semantically and syn-

tactically rigid, therefore deg∀-semrig (ℳ) = deg∃-semrig (ℳ) = deg∀-syntrig (ℳ) =

deg∃-syntrig (ℳ) = 0. We observe the same effect for arbitrary structures in
which each element is marked by a constant.

Example 2. If ℳ has the empty language then

deg∀-semrig (ℳ) = deg∃-semrig (ℳ) = deg∀-syntrig (ℳ) = deg∃-syntrig (ℳ) = |𝑀 | − 1

if ℳ is finite, and and these values equal ∞ if ℳ is infinite.

Example 3. If 𝒱 is a vector space over a field 𝐹 then we have the following
criterion for the semantic/syntactic rigidity: deg∀-semrig (𝒱) = deg∃-semrig (𝒱) =
deg∀-syntrig (𝒱) = deg∃-syntrig (𝒱) = 0 iff dim(𝒱) ≤ 1 and |𝐹 | = 2 for dim(𝒱) = 1.

If 𝒱 is not rigid then deg∃-semrig (𝒱) = deg∃-syntrig (𝒱) = dim(𝒱) for finite dim(𝒱),
and deg∃-semrig (𝒱) = deg∃-syntrig (𝒱) = ∞, otherwise. Besides, deg∀-semrig (𝒱) =

deg∀-syntrig (𝒱) = ∞ if dim(𝒱) is infinite, or dim(𝒱) ≥ 1 and 𝐹 is infinite.

Finally for dim(𝒱) = 𝑛 ∈ 𝜔∖{0} and |𝐹 | = 𝑚 ∈ 𝜔∖{0} with (𝑛,𝑚) ̸= (1, 2),

we have deg∀-semrig (𝒱) = deg∀-syntrig (𝒱) = (𝑛 − 1)𝑚 + 1, since we obtain the

rigidity taking all vectors in a (𝑛−1)-dimensional subspace 𝒱 ′, with (𝑛−1)𝑚
elements, and a vector in 𝒱 ∖ 𝒱 ′.

Example 4. Let ℳ be a structure of disjoint infinite unary predicates 𝑃𝑖,
𝑖 ∈ 𝐼, expanded by constants for all elements in

⋃︀
𝑖∈𝐼

𝑃𝑖. Since ℳ is both se-

mantically and syntactically rigid we have deg𝑄-semrig (ℳ) = deg𝑄-syntrig (ℳ) =

0 for 𝑄 ∈ {∀, ∃}. At the same time extending 𝑛 predicates 𝑃𝑖 by new
elements 𝑎𝑖 we obtain 𝒩 ≻ ℳ with deg∀-semrig (𝒩 ) = deg∃-semrig (𝒩 ) = 0,

deg∃-syntrig (𝒩 ) = 𝑛, deg∀-syntrig (𝒩 ) = ∞. Moreover, if infinitely many 𝑃𝑖
are extended by new elements 𝑎𝑖 then the correspondent elementary ex-
tension 𝒩 ′ of ℳ has the following characteristics: deg∃-semrig (𝒩 ′) = 0,

deg∃-syntrig (𝒩 ′) = 𝑛 and deg∀-semrig (𝒩 ′) = deg∀-syntrig (𝒩 ′) = ∞. Besides, if
some extended 𝑃𝑖 are again extended by 𝑚 new elements in total then
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an appropriate elementary extension 𝒩𝑚,𝑛 has the following characteris-

tics: deg∃-semrig (𝒩𝑚,𝑛) = 𝑚, deg∃-syntrig (𝒩𝑚,𝑛) = 𝑚 + 𝑛, deg∀-semrig (𝒩𝑚,𝑛) =

deg∀-syntrig (𝒩𝑚,𝑛) = ∞ including the possibility

deg∃-semrig (𝒩𝜇,𝑛) =

= deg∃-syntrig (𝒩𝜇,𝑛) = deg∀-semrig (𝒩𝜇,𝑛) = deg∀-syntrig (𝒩𝜇,𝑛) = ∞

if 𝜇 ≥ 𝜔 new elements are added.

Thus by Example 4 the difference between

deg∃-semrig (ℳ) and deg∃-syntrig (ℳ)

can be arbitrary large. In view of Proposition 1 and inequality 2.2 we
obtain the following theorem on distributions for these characteristics:

Theorem 1. 1. The pairs
(︁
deg∃-semrig (ℳ), deg∃-syntrig (ℳ)

)︁
belong to the set

DEG∃-sem,∃-synt
rig = {(𝜇, 𝜈) | 𝜇, 𝜈 ∈ 𝜔 ∪ {∞}, 𝜇 ≤ 𝜈}.

2. For each pair (𝜇, 𝜈) ∈ DEG∃-sem,∃-synt
rig there exists a structure ℳ𝜇,𝜈

such that
deg∃-semrig (ℳ𝜇,𝜈) = 𝜇, deg∃-syntrig (ℳ𝜇,𝜈) = 𝜈.

Example 4 shows that values in DEG∃-sem,∃-synt
rig in Theorem 1 are covered

by structures in countable languages Σ1 of unary predicates. Now we

describe possibilities for the pairs
(︁
deg∀-semrig (ℳ),deg∀-syntrig (ℳ)

)︁
in these

languages Σ1.

Proposition 2. For any structure ℳ in a language Σ1 of unary predicates
the pair (︁

deg∀-semrig (ℳ), deg∀-syntrig (ℳ)
)︁

has one of the following possibilities:
1) (0, 0), if ℳ is both semantically and syntactically rigid;
2) (𝑛, 𝑛), if ℳ is finite with 𝑛 + 1 elements and it is not semantically

rigid that is not syntactically rigid;
3) (0,∞), if ℳ is infinite, semantically rigid but not syntactically rigid;
4) (∞,∞), if ℳ is infinite and both not semantically rigid and not

syntactically rigid.

Proof. If ℳ is syntactically rigid then we have(︁
deg∀-semrig (ℳ), deg∀-syntrig (ℳ)

)︁
= (0, 0)

by the inequality (2.1). Now we assume that ℳ is not syntactically rigid
and consider the following cases.

Известия Иркутского государственного университета.
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Case 1: ℳ is semantically rigid, i.e., deg∀-semrig (ℳ) = 0. In such a
case ℳ is infinite since finite structures have isolated 1-types only and
there are complete 1-types over empty set with at least two realizations
that contradicts the semantic rigidity for the language Σ1. Again using
the unary language Σ1 and the arguments of [2, Section 8.1] that all 1-
types, over empty set, are forced by formulae of quantifier free diagrams
and formulae describing estimations for cardinalities of their solutions, with
independent actions of automorphisms in distinct sets of realizations of 1-
types. Thus each 1-type has at most one realization in ℳ. Since ℳ is not
syntactically rigid, ℳ realizes at least one nonisolated 1-type 𝑝(𝑥) by some
unique element 𝑎. Now for any 𝑛 ∈ 𝜔 we can take 𝑛 realizations of other

1-types forming a set 𝐴 such that 𝑎 /∈ dcl(𝐴). It implies deg∀-syntrig (ℳ) = ∞.

Case 2: ℳ is not semantically rigid and |𝑀 | = 𝑛 + 1 ∈ 𝜔. In such a
case ℳ has a complete 1-type 𝑝(𝑥) with at least two realizations 𝑎 and 𝑏.
Since there is an (𝑀 ∖ {𝑎, 𝑏})-automorphism 𝑓 with 𝑓(𝑎) = 𝑏, we obtain

deg∀-semrig (ℳ) = 𝑛 implying deg∀-syntrig (ℳ) = 𝑛 by the inequality (2.1) and
the syntactic rigidity of ℳ over each 𝑛-element set.

Case 3: ℳ is not semantically rigid and it is infinite. In such a case
ℳ has a complete 1-type 𝑝(𝑥) with at least two realizations 𝑎 and 𝑏 and
such that realizations of other 1-types allow to form arbitrarily large finite
set 𝐴 such that some 𝐴-automorphism transforms 𝑎 in 𝑏. It means that

deg∀-semrig (ℳ) = ∞ implying deg∀-syntrig (ℳ) = ∞ by the inequality (2.1).

Combining arguments for Theorems 1 and 2 we obtain the following
possibilities for tetrads

deg4(ℳ)

(︁
deg∃-semrig (ℳ), deg∃-syntrig (ℳ), deg∀-semrig (ℳ), deg∀-syntrig (ℳ)

)︁
in a language of unary predicates:

Corollary 1. For any structure ℳ in a language Σ1 of unary predicates
the tetrad deg4(ℳ) has one of the following possibilities:

1) (0, 0, 0, 0), if ℳ is both semantically and syntactically rigid;
2) (𝑚,𝑚, 𝑛, 𝑛), if ℳ is finite with 𝑛+ 1 elements and it is not seman-

tically rigid that is not syntactically rigid with some minimal 𝑚-elements
set 𝐴 ⊂𝑀 , 1 ≤ 𝑚 ≤ 𝑛, producing dcl(𝐴) =𝑀 ;

3) (0, 𝜈, 0,∞), if ℳ is infinite, semantically rigid but not syntactically
rigid, with 1 ≤ 𝜈 ≤ ∞;

4) (𝜇, 𝜈,∞,∞), if ℳ is infinite and both not semantically rigid and not
syntactically rigid, with 1 ≤ 𝜇 ≤ 𝜈 ≤ ∞.

Example 5. Let ℳ be a finitely generated algebra by a set 𝑋. Then by

the definition we have deg∃-syntrig (ℳ) ≤ |𝑋| which implies deg∃-semrig (ℳ) ≤
|𝑋| by the inequality (2.2). Here, if additionally the generating set 𝑋
admits substitutions by any 𝑌 ⊆𝑀 with |𝑌 | = |𝑋| and these substitutions
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preserve the generating property then we have deg∀-syntrig (ℳ) ≤ |𝑋| which
implies deg∃-semrig (ℳ) ≤ |𝑋| by the inequality (2.1). For instance, if ℳ is
a directed graph forming a finite cycle of positive length then deg4(ℳ) =
(1, 1, 1, 1).

Since algebras, with constants and unary operations, can define arbitrary
configurations of unary predicates, possibilities for characteristics deg4(ℳ)
in Corollary 1 can be realized in the class of algebras, too.

Example 6. Let pm = pm(𝐺1, 𝐺2,𝒫) be a connected polygonometry of
a group pair (𝐺1, 𝐺2) on an exact pseudoplane 𝒫, and ℳ = ℳ(pm) be
a ternary structure for pm [7]. Since all points 𝑎 in ℳ are connected by
automorphisms we have acl({𝑎}) = {𝑎}. At the same time any two distinct
points 𝑎, 𝑏 ∈ 𝑀(pm) (laying in a common line) define all points in ℳ by
line and angle parameters of broken lines. It implies 𝑀(pm) = dcl({𝑎, 𝑏}).
If line and angle parameters of shortest broken lines connecting arbitrary
distinct points 𝑎 and 𝑏 are defined uniquely then 𝑀(pm) = dcl({𝑎, 𝑏}) for
these points, too. Hence, in such a case, deg∃-semrig (ℳ) = deg∃-syntrig (ℳ) =

deg∀-semrig (ℳ) = deg∀-syntrig (ℳ) ≤ 2. Moreover, these degree values equal 1

iff pm consists of unique line and with at least two points, i.e., |𝐺1| > 1
and |𝐺2| = 1. Finally, for a polygonometry pm, the degrees equal 0 iff pm
consists of unique point.

If parameters of broken lines do not define these broken lines by end-
points then finite cardinalities of points in these lines can be unbounded.
Indeed, taking opposite vertices 𝑎 and 𝑏 in an 𝑛-cube [7; 8] or in its poly-
gonometry pm we obtain 𝑛 adjacent vertices 𝑐1, . . . , 𝑐𝑛 for 𝑎 and these
vertices are connected by {𝑎, 𝑏}-automorphisms. Moreover, in such a case,

deg∃-semrig (ℳ) = deg∃-syntrig (ℳ) = 𝑛 + 1 witnessed, for instance, by the set

𝐴 = {𝑎, 𝑏, 𝑐1, . . . , 𝑐𝑛−1}.
The value deg4(ℳ2) = (2, 2, 2, 2) for ℳ2 = ℳ(pm) can be increased

till deg4(ℳ𝑛) = (𝑛, 𝑛, 𝑛, 𝑛), 𝑛 ≥ 3, generalizing group trigonometries in
the following way. We construct a (𝑛 + 1)-dimensional space consisting of
points and 𝑛-dimensional hyperplanes. We introduce an incidence 𝑛-ary
relation 𝐼𝑛 for 𝑛 distinct points to lay on a common hyperplane. Now
fixing a hyperplane 𝐻 and 𝑛− 1 pairwise distinct points 𝑎1, . . . , 𝑎𝑛−1 ∈ 𝐻
we define an exact transitive action of a group 𝐺1 on𝐻∖{𝑎1, . . . , 𝑎𝑛−1}, i.e.,
on 𝐻 with respect to 𝑎1, . . . , 𝑎𝑛−1, such that this action is transformed for
any pairwise distinct points 𝑎′1, . . . , 𝑎

′
𝑛−1 ∈ 𝐻. Since each 𝐻 can be defined

by its 𝑛− 1 distinct points with actions, we can fix 𝑎1, . . . , 𝑎𝑛−1 and move
𝑎𝑛 ∈ 𝐻 ∖ {𝑎1, . . . , 𝑎𝑛−1} into points 𝑎′𝑛 in other hyperplanes 𝐻 ′ containing
𝑎1, . . . , 𝑎𝑛−1. Collecting these movements we define an action of a group
𝐺2 on that bundle of hyperplanes containing 𝑎1, . . . , 𝑎𝑛−1. Then we spread
actions of 𝐺1 and 𝐺2 for any hyperplanes and bundles of hyperplanes,
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respectively, such that all pairwise distinct 𝑎1, . . . , 𝑎𝑛−1 and 𝑎′1, . . . , 𝑎
′
𝑛−1

are connected by automorphisms with respect to these actions.
For instance, taking the set 𝑃 of planes in R3, a plane 𝜋 ∈ 𝑃 and distinct

points 𝑎1, 𝑎2 ∈ 𝑃 the action of 𝐺1 can be defined as R × 𝐴 with the side
group R and angle group 𝐴 defining both the directed distance 𝑑 ∈ R from
𝑎1 to a point 𝑎3 ∈ 𝜋 and the angle value 𝛼 from the side 𝑎1̂ 𝑎2 to the side
𝑎1̂ 𝑎3. And 𝐺2 is the rotation group for the planes in 𝑃 around the lines
𝑙(𝑎1, 𝑎2).

Now we extend the language {𝐼𝑛} by (𝑛+1)-ary predicates 𝑄𝑔1 , 𝑔1 ∈ 𝐺1,
such that first (𝑛 − 1)-coordinates 𝑎 in ⟨𝑎, 𝑏, 𝑐⟩ ∈ 𝑄𝑔1 are exhausted by
𝑎1, . . . , 𝑎𝑛−1 and 𝑐 = 𝑏𝑔1 with respect to 𝑎1, . . . , 𝑎𝑛−1. Simultaneously we
define predicates 𝑅𝑔2 , 𝑔2 ∈ 𝐺2, of arities 𝑛+1 such that each 𝑅𝑔2 realizes a
rotation of a hyperplane with respect to 𝑎1, . . . , 𝑎𝑛−1 by the element 𝑔2. We

obtain a structure ℳ𝑛 whose values deg𝑄-semrig (ℳ𝑛) and deg𝑄-syntrig (ℳ𝑛), for

𝑄 ∈ {∀, ∃} equal 𝑛.
The construction above admits a generalization for polygonometries

pm(𝐺1, 𝐺2,𝒫) of group pairs transforming (𝐺1, 𝐺2) a pseudoplane 𝒫 to
a pseudospace 𝒮 with hyperplanes 𝐻 such that 𝐻 = dcl({𝑎1, . . . , 𝑎𝑛}) for
any pairwise distinct points 𝑎1, . . . , 𝑎𝑛 ∈ 𝐻 and with dcl({𝑏1, . . . , 𝑏𝑛−1}) =
{𝑏1, . . . , 𝑏𝑛−1} for any 𝑏1, . . . , 𝑏𝑛−1 ∈ 𝒮.

Comparing characteristics deg∃-semrig (ℳ)/deg∃-syntrig (ℳ) and deg∀-semrig (ℳ)

/ deg∀-syntrig (ℳ) we observe that the first ones produce cardinalities of “best”,
i.e., minimal sets generating the structure ℳ and the second ones give car-
dinalities of “worst” generating sets. It is natural to describe possibilities
of “intermediate” generating sets. For this aim we define the degrees of
rigidity with respect to a subset 𝐴 of 𝑀 as follows:

Definition. For a set 𝐴 in ℳ and an expansion ℳ𝐴 of ℳ by constants
in 𝐴, the least 𝑛 such that ℳ𝐴 is 𝑄-semantically / 𝑄-syntactically 𝑛-rigid,
where𝑄 ∈ {∀,∃}, is called the (𝑄,𝐴)-semantical / (𝑄,𝐴)-syntactical degree

of rigidity, it is denoted by deg𝑄-semrig,𝐴 (ℳ) and deg𝑄-syntrig,𝐴 (ℳ), respectively. If

such 𝑛 does not exists we put deg𝑄-semrig,𝐴 (ℳ) = ∞ and deg𝑄-syntrig,𝐴 (ℳ) = ∞,
respectively.

Any expansion ℳ𝐴 of ℳ with deg∃-𝑠rig (ℳ𝐴) = 0, for 𝑠 ∈ {sem, synt}, is
called a 𝑠-rigiditization or simply a rigiditization of ℳ.

We have the following properties for (𝑄,𝐴)-semantical and (𝑄,𝐴)-syn-
tactical degrees of rigidity:

Proposition 3. Let ℳ be a structure, 𝐴⊆𝑀 , 𝑄∈{∀, ∃}, 𝑠 ∈ {sem, synt}.
Then the following assertions hold:

1. (Preservation of degrees of rigidity) If 𝐴 ⊆ dcl(∅) then deg𝑄-𝑠rig (ℳ) =

deg𝑄-𝑠rig,𝐴(ℳ).
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2. (Rigiditization) If 𝐴 contains a witnessing set for the finite value
deg∃-𝑠rig (ℳ) then deg∃-𝑠rig,𝐴(ℳ) = 0.

3. (Monotony) If 𝐴 ⊆ 𝐵 ⊆𝑀 then deg𝑄-𝑠rig,𝐴(ℳ) ≥ deg𝑄-𝑠rig,𝐵(ℳ).

4. (Additivity) If 𝐴 witnesses the finite value deg∃-𝑠rig (ℳ) then for any
𝐴′ ⊆ 𝐴,

deg∃-𝑠rig (ℳ) = deg∃-𝑠rig,𝐴′(ℳ) + deg∃-𝑠rig,𝐴∖𝐴′(ℳ).

5. (Cofinite character) If 𝐴 is cofinite in ℳ then deg∃-semrig,𝐴 (ℳ) and

deg∃-syntrig,𝐴 (ℳ) are natural.

6. (Finite rigiditization) Any cofinite set 𝐴 in ℳ has a minimal finite
extension 𝐴′ such that ℳ𝐴′ is semantically / syntactically rigid.

Proof. 1. If 𝐴 ⊆ dcl(∅) then Aut(ℳ) = Aut(ℳ𝐴) and therefore the

equalities deg𝑄-𝑠rig (ℳ) = deg𝑄-𝑠rig,𝐴(ℳ) hold for 𝑠 = sem. For the case 𝑠 =

synt the required equalities are satisfied in view of dcl(𝐵) = dcl(𝐴∪𝐵) for
any 𝐵 ⊆𝑀 .

2. If 𝐴 contains a witnessing set for the finite value deg∃-semrig (ℳ) then

there exists identical 𝐴-automorphism of ℳ only implying deg∃-semrig,𝐴 (ℳ) =

0. Similarly if 𝐴 contains a witnessing set for the finite value deg∃-syntrig (ℳ)

then dcl(𝐴) =𝑀 producing deg∃-syntrig,𝐴 (ℳ) = 0.

3. If 𝐴 ⊆ 𝐵 ⊆𝑀 then Aut(ℳ𝐵) ≤ Aut(ℳ𝐴) therefore the inequalities

deg𝑄-𝑠rig,𝐴(ℳ) ≥ deg𝑄-𝑠rig,𝐵(ℳ) hold for 𝑠 = sem. For the case 𝑠 = synt the

required equalities are satisfied in view of dcl(𝐴∪𝐶) ⊆ dcl(𝐵 ∪𝐶) for any
𝐶 ⊆𝑀 .

4. If 𝐴 witnesses the finite value deg∃-𝑠rig (ℳ) then we divide 𝐴 into

two disjoint parts 𝐴1 and 𝐴2 and by the definition of deg∃-𝑠rig (ℳ), both 𝐴1

and 𝐴2 are extended till minimal 𝐴 witnessing the semantic / syntactic
rigidity. Thus 𝐴1 witnesses the value deg∃-semrig (ℳ𝐴2) and 𝐴2 witnesses

the value deg∃-semrig (ℳ𝐴1) producing the required equation deg∃-𝑠rig (ℳ) =

deg∃-𝑠rig,𝐴′(ℳ) + deg∃-𝑠rig,𝐴∖𝐴′(ℳ).
5. If 𝐴 is cofinite in ℳ then there are only finitely many elements, all in

𝑀 ∖ 𝐴, witnessing the values deg∃-semrig,𝐴 (ℳ) and deg∃-syntrig,𝐴 (ℳ). Thus these
values are natural.

6. It is immediately implied by Items 2 and 5.

In view of Proposition 3 fixing a subset in ℳ large enough we ob-
tain its rigiditization. At the same time the following assertion clarifies
that small subsets can produce the rigiditization for structures in bounded
cardinalities only.

Proposition 4. 1. If deg∃-syntrig (ℳ) is finite then |𝑀 | ≤ max{Σ(ℳ), 𝜔}.
1. If ℳ is homogeneous and deg∃-semrig (ℳ) is finite then

|𝑀 | ≤ 2max{Σ(ℳ),𝜔}.
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Proof. 1. If deg∃-syntrig (ℳ) is finite then there is a finite set 𝐴 ⊆ 𝑀

witnessing that value, with 𝑀 = dcl(𝐴). This equality is witnessed by at
most by max{Σ(ℳ), 𝜔} formulae such that each element in ℳ is defined
by a formula in the language Σ(ℳ𝐴). Since there are max{Σ(ℳ), 𝜔}
Σ(ℳ𝐴)-formulae we obtain at most max{Σ(ℳ), 𝜔} elements in ℳ.

2. If a finite set 𝐴 ⊆ 𝑀 witnesses the finite value deg∃-semrig (ℳ) and ℳ
is homogeneous possibilities for 𝐴-automorphisms fixing elements of ℳ are
exhausted by single realizations of types in 𝑆1(𝐴). Since there are at most
2max{Σ(ℳ),𝜔} these types that value is the required upper bound for the
cardinality of semantically rigid structure ℳ𝐴.

Proposition 4 immediately implies the following:

Corollary 2. 1. If deg∃-syntrig,𝐴 (ℳ) is finite then |𝑀 | ≤ max{Σ(ℳ), |𝐴|, 𝜔}.
1. If ℳ is homogeneous and deg∃-semrig,𝐴 (ℳ) is finite then

|𝑀 | ≤ 2max{Σ(ℳ),|𝐴|,𝜔}.

3. Indexes of rigidity

Definition. For a set 𝐴 in a structure ℳ the index of rigidity of ℳ
over 𝐴, denoted by indrig(ℳ/𝐴) is the supremum of cardinalities for the
set of solutions of algebraic types tp(𝑎/𝐴) for 𝑎 ∈𝑀 . We put indrig(ℳ) =
indrig(ℳ/∅). Here we assume that indrig(ℳ) = 0 if ℳ does not have
algebraic types tp(𝑎) for 𝑎 ∈𝑀 .

Remark 1. By the definition we have indrig(ℳ/𝐴) ∈ 𝜔 + 1.

Example 7. 1. If ℳ is a structure of unary predicates 𝑃𝑖, 𝑖 ∈ 𝐼, then

indrig(ℳ) = 0 iff there are no finite nonempty intersections 𝑃 𝛿1𝑖1 ∩ . . .∩𝑃 𝛿𝑘𝑖𝑘 ,
𝛿1, . . . , 𝛿𝑘 ∈ {0, 1}. We have indrig(ℳ) = 1 iff dcl(∅) ̸= ∅ and there are

no maximal finite intersections 𝑃 𝛿1𝑖1 ∩ . . . ∩ 𝑃 𝛿𝑘𝑖𝑘 with at least two elements.
Besides, indrig(ℳ) ∈ 𝜔 iff these finite intersections have bounded cardinal-
ities, and all natural possibilities 𝑛 are realized by predicates with exactly
𝑛 elements and infinite complements. Otherwise, i.e., for indrig(ℳ) = 𝜔,
these finite intersections have unbounded cardinalities.

2. If ℳ is a structure of an equivalence relation 𝐸, then indrig(ℳ) = 0
iff there are no finite 𝐸-classes. We have indrig(ℳ) = 1 iff dcl(∅) ̸= ∅
and there are no finite 𝐸-classes with at least two elements. Besides,
indrig(ℳ) ∈ 𝜔 iff these 𝐸-classes have bounded cardinalities, and all natural
possibilities 𝑛 are realized by infinitely many 𝐸-classes with exactly 𝑛 ele-
ments. Otherwise, i.e., for indrig(ℳ) = 𝜔, these 𝐸-classes have unbounded
cardinalities.
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3. If ℳ = ℳ(pm) for a polygonometry pm then indrig(ℳ) = 0 iff
pm has infinitely many points. Otherwise, if pm has 𝑛 ∈ 𝜔 points then
indrig(ℳ) = 𝑛.

More generally, we have the following possibilities for a model ℳ of
transitive theory 𝑇 , i.e., of a theory with |𝑆1(∅)| = 1:

i) indrig(ℳ) = 0, if ℳ is infinite;
ii) indrig(ℳ) = |ℳ|, if ℳ is finite.

In view of Remark 1 the following assertion describes possibilities of
indexes of rigidity:

Proposition 5. For any 𝜆 ∈ 𝜔 + 1 there is a structure ℳ𝜆 such that
indrig(ℳ𝜆) = 𝜆.

Proof follows by Example 7.

4. Variations of rigidity for disjoint unions of structures

Definition [12]. The disjoint union
⨆︀
𝑛∈𝜔

ℳ𝑛 of pairwise disjoint struc-

tures ℳ𝑛 for pairwise disjoint predicate languages Σ𝑛, 𝑛 ∈ 𝜔, is the

structure of language
⋃︀
𝑛∈𝜔

Σ𝑛 ∪ {𝑃 (1)
𝑛 | 𝑛 ∈ 𝜔} with the universe

⨆︀
𝑛∈𝜔

𝑀𝑛,

𝑃𝑛 = 𝑀𝑛, and interpretations of predicate symbols in Σ𝑛 coinciding with
their interpretations in ℳ𝑛, 𝑛 ∈ 𝜔. The disjoint union of theories 𝑇𝑛 for
pairwise disjoint languages Σ𝑛 accordingly, 𝑛 ∈ 𝜔, is the theory

⨆︁
𝑛∈𝜔

𝑇𝑛 
 Th

(︃⨆︁
𝑛∈𝜔

ℳ𝑛

)︃
,

where ℳ𝑛 |= 𝑇𝑛, 𝑛 ∈ 𝜔.

Theorem 2. For any disjoint predicate structures ℳ1 and ℳ2, and 𝑠 ∈
{sem, synt} the following conditions hold:

1. deg∃-𝑠rig (ℳ1 ⊔ℳ2) = deg∃-𝑠rig (ℳ1) + deg∃-𝑠rig (ℳ2), in particular,

deg∃-𝑠rig (ℳ1 ⊔ℳ2)

is finite iff deg∃-𝑠rig (ℳ1) and deg∃-𝑠rig (ℳ2) are finite.

2. deg∀-𝑠rig (ℳ1 ⊔ℳ2) = 0 iff deg∀-𝑠rig (ℳ1) = 0 and deg∀-𝑠rig (ℳ2) = 0.

3. If deg∀-𝑠rig (ℳ1 ⊔ℳ2) > 0 then it is finite iff deg∀-𝑠rig (ℳ1) > 0 is finite

and ℳ2 is finite, or deg∀-𝑠rig (ℳ2) > 0 is finite and ℳ1 is finite. Here,

deg∀-𝑠rig (ℳ1 ⊔ℳ2) = max{|𝑀1|+ deg∀-𝑠rig (ℳ2), |𝑀2|+ deg∀-𝑠rig (ℳ1)}.
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Proof. 1. Let 𝐴𝑖 ⊂𝑀𝑖 be sets witnessing values deg
∃-𝑠
rig (ℳ𝑖), 𝑖 = 1, 2. By

the definition of ℳ1 ⊔ℳ2, 𝐴1 and 𝐴2 are disjoint and 𝐴1 ∪ 𝐴2 witnesses
the value deg∃-𝑠rig (ℳ1 ⊔ ℳ2). Thus deg∃-𝑠rig (ℳ1 ⊔ ℳ2) = deg∃-𝑠rig (ℳ1) +

deg∃-𝑠rig (ℳ2).

2. If deg∀-𝑠rig (ℳ1⊔ℳ2) = 0 then the empty set witnesses that ℳ1⊔ℳ2,

ℳ1 andℳ2 are 𝑠-rigid, i.e., rigid with respect to 𝑠, implying deg∀-𝑠rig (ℳ1) =

0 and deg∀-𝑠rig (ℳ2) = 0. Conversely, if deg∀-𝑠rig (ℳ1) = 0 and deg∀-𝑠rig (ℳ2) = 0
then the empty set witnesses that ℳ1 and ℳ2 are 𝑠-rigid. Now by the
definition of ℳ1 ⊔ℳ2 we observe that ℳ1 ⊔ℳ2 is 𝑠-rigid, too, implying
deg∀-𝑠rig (ℳ1 ⊔ℳ2) = 0.

3. Let deg∀-𝑠rig (ℳ1 ⊔ℳ2) > 0 be finite, then by Item 2, deg∀-𝑠rig (ℳ1) > 0

or deg∀-𝑠rig (ℳ2) > 0. Assuming that deg∀-𝑠rig (ℳ𝑖) > 0 we can not witness that
value by subsets of 𝑀3−𝑖, 𝑖 = 1, 2. Thus 𝑀3−𝑖 should be finite. Conversely,
let deg∀-𝑠rig (ℳ1) > 0 be finite and ℳ2 be finite, or deg∀-𝑠rig (ℳ2) > 0 be finite

and ℳ1 be finite. Then we can take deg∀-𝑠rig (ℳ1) elements of 𝑀1 and all
elements of 𝑀2 obtaining the 𝑠-rigidity of ℳ1⊔ℳ2. Similarly we can take
deg∀-𝑠rig (ℳ2) elements of 𝑀2 and all elements of 𝑀1 obtaining the 𝑠-rigidity

of ℳ1 ⊔ℳ2, too. Thus, the finite value max{|𝑀1| + deg∀-𝑠rig (ℳ2), |𝑀2| +
deg∀-𝑠rig (ℳ1)} equals deg∀-𝑠rig (ℳ1 ⊔ℳ2).

Theorem 2 and Corollary 1 immediately imply:

Corollary 3. For any structures ℳ1 and ℳ2 in a language Σ1 of unary
predicates the tetrad deg4(ℳ1 ⊔ℳ2) has one of the following possibilities:

1) (0, 0, 0, 0), if ℳ1 and ℳ2 are both semantically and syntactically
rigid;

2) (𝑚,𝑚, 𝑛, 𝑛), if ℳ1 and ℳ2 are finite with |𝑀1 ∪̇𝑀2| = 𝑛+1 elements
and some ℳ𝑖 is not semantically rigid that is not syntactically rigid with
some minimal 𝑚1-elements set 𝐴1 ⊂ 𝑀1 producing dcl(𝐴1) = 𝑀1 and
some minimal 𝑚2-elements set 𝐴2 ⊂ 𝑀2 producing dcl(𝐴2) = 𝑀2, where
𝑚 = 𝑚1 +𝑚2 ≤ 𝑛− 1;

3) (0, 𝜈, 0,∞), if ℳ1 ⊔ ℳ2 is infinite, ℳ1 and ℳ2 are semantically
rigid but some of them is not syntactically rigid, with 1 ≤ 𝜈 ≤ ∞, 𝜈 =

deg∃-syntrig (ℳ1) + deg∃-syntrig (ℳ2);

4) (𝜇, 𝜈,∞,∞), if ℳ1 ⊔ℳ2 is infinite, ℳ1 or ℳ2 is not semantically
rigid, ℳ1 or ℳ2 is not syntactically rigid, with 1 ≤ 𝜇 ≤ 𝜈 ≤ ∞, 𝜇 =

deg∃-semrig (ℳ1) + deg∃-semrig (ℳ2), 𝜈 = deg∃-syntrig (ℳ1) + deg∃-syntrig (ℳ2).

Theorem 3. For any disjoint predicate structures ℳ1 and ℳ2, and a set
𝐴 ⊆𝑀1 ∪𝑀2,

indrig((ℳ1⊔ℳ2)/𝐴) = max{indrig(ℳ1/(𝑀1∩𝐴)), indrig(ℳ2)/(𝑀2∩𝐴)}.
Proof. By the definition of disjoint union types in 𝑆1(𝐴) are locally

realized either in ℳ1 or in ℳ2. Moreover, they are forced by their re-
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strictions to 𝑀1 or 𝑀2. So algebraic types 𝑝(𝑥) ∈ 𝑆1(𝐴) are defined
in ℳ1 or in ℳ2 by their restrictions to 𝑀1 ∩ 𝐴 and to 𝑀2 ∩ 𝐴. Now
we collect possibilities for cardinalities of sets of realizations of algebraic
types in 𝑆1(𝑀1 ∩ 𝐴) and in 𝑆1(𝑀2 ∩ 𝐴). We either choose a maximal
natural cardinality obtaining natural 𝑛 = indrig((ℳ1 ⊔ℳ2)/𝐴) with 𝑛 =
max{indrig(ℳ1/(𝑀1 ∩𝐴)), indrig(ℳ2)/(𝑀2 ∩𝐴)} or there are no maximal
natural cardinality with both indrig((ℳ1 ⊔ℳ2)/𝐴) = 𝜔 and

max{indrig(ℳ1/(𝑀1 ∩𝐴)), indrig(ℳ2)/(𝑀2 ∩𝐴)} = 𝜔.

5. Variations of rigidity for compositions of structures

Recall the notions of composition for structures and theories.

Definition [1]. Let ℳ and 𝒩 be structures of relational languages
Σℳ and Σ𝒩 respectively. We define the composition ℳ[𝒩 ] of ℳ and 𝒩
satisfying the following conditions:

1) Σℳ[𝒩 ] = Σℳ ∪ Σ𝒩 ;
2) 𝑀 [𝑁 ] =𝑀 ×𝑁 , where 𝑀 [𝑁 ], 𝑀 , 𝑁 are universes of ℳ[𝒩 ], ℳ, and

𝒩 respectively;
3) if 𝑅 ∈ Σℳ ∖ Σ𝒩 , 𝜇(𝑅) = 𝑛, then ((𝑎1, 𝑏1), . . . , (𝑎𝑛, 𝑏𝑛)) ∈ 𝑅ℳ[𝒩 ] if

and only if (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅ℳ;
4) if 𝑅 ∈ Σ𝒩 ∖ Σℳ, 𝜇(𝑅) = 𝑛, then ((𝑎1, 𝑏1), . . . , (𝑎𝑛, 𝑏𝑛)) ∈ 𝑅ℳ[𝒩 ] if

and only if 𝑎1 = . . . = 𝑎𝑛 and (𝑏1, . . . , 𝑏𝑛) ∈ 𝑅𝒩 ;
5) if 𝑅 ∈ Σℳ ∩ Σ𝒩 , 𝜇(𝑅) = 𝑛, then ((𝑎1, 𝑏1), . . . , (𝑎𝑛, 𝑏𝑛)) ∈ 𝑅ℳ[𝒩 ] if

and only if (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅ℳ, or 𝑎1 = . . . = 𝑎𝑛 and (𝑏1, . . . , 𝑏𝑛) ∈ 𝑅𝒩 .
The theory 𝑇 = Th(ℳ[𝒩 ]) is called the composition 𝑇1[𝑇2] of the

theories 𝑇1 = Th(ℳ) and 𝑇2 = Th(𝒩 ).

By the definition, the composition ℳ[𝒩 ] is obtained replacing each
element of ℳ by a copy of 𝒩 .

Definition [1]. The composition ℳ[𝒩 ] is called 𝐸-definable if ℳ[𝒩 ]
has an ∅-definable equivalence relation 𝐸 whose 𝐸-classes are universes of
the copies of 𝒩 forming ℳ[𝒩 ].

Remark 2. It is shown in [1] that 𝐸-definable compositions ℳ[𝒩 ]
uniquely define theories Th(ℳ[𝒩 ]) by theories Th(ℳ) and Th(𝒩 ) and
types of elements in copies of 𝒩 are defined by types in these copies and
types for connections between these copies.

Proposition 6. For 𝐸-definable compositions ℳ[𝒩 ] the automorphism
group Aut(ℳ[𝒩 ]) is isomorphic to the wreath product of Aut(ℳ) and
Aut(𝒩 ):

Aut(ℳ[𝒩 ]) ≃ Aut(ℳ) ≀Aut(𝒩 ).
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Proof. Since all copies of 𝒩 are isomorphic in ℳ[𝒩 ] and form de-
finable 𝐸-classes each automorphism 𝑓 ∈ Aut(ℳ[𝒩 ]) is defined both by
the action on the set of 𝐸-classes, which corresponds to an automorphism
𝑔 ∈ Aut(ℳ), and by the the actions on the 𝐸-classes, which corresponds to
an automorphism ℎ for copies of 𝒩 . Therefore 𝑓 is situated in the one-to-
one correspondence with the pair (𝑔, ℎ) producing a correspondent element
of Aut(ℳ) ≀Aut(𝒩 ).

In view of Remark 2 and Proposition 6 we have the following:

Theorem 4. For any 𝐸-definable composition ℳ[𝒩 ] the following condi-
tions hold:

deg∃-semrig (ℳ[𝒩 ]) = deg∃-semrig (ℳ),

if 𝒩 is semantically rigid, and

deg∃-semrig (ℳ[𝒩 ]) = |𝑀 | · deg∃-semrig (𝒩 ),

if 𝒩 is not semantically rigid. In particular, deg∃-semrig (ℳ[𝒩 ]) is finite iff

deg∃-semrig (ℳ) and 𝒩 are finite, if 𝒩 is semantically rigid, and deg∃-semrig (𝒩 )
and ℳ are finite, if 𝒩 is not semantically rigid.

Proof. If 𝒩 is semantically rigid then it suffices to find possibilities
for automorphisms of ℳ since in such a case the semantical rigidity of
an inessential expansion of ℳ implies the semantical rigidity of corre-
spondent inessential expansion of ℳ[𝒩 ]. Thus, here deg∃-semrig (ℳ[𝒩 ]) =

deg∃-semrig (ℳ). If 𝒩 is not semantically rigid then copies of 𝒩 in ℳ[𝒩 ]
are automorphically independent, i.e., fixing automorphisms for ℳ[𝒩 ] one
have to fix all automorphisms for these copies. Since the smallest set fixing
automorphisms for𝒩 contains deg∃-semrig (𝒩 ), we have at least and minimally

at most |𝑀 |·deg∃-semrig (𝒩 ) elements to fix automorphisms forℳ[𝒩 ] implying

deg∃-semrig (ℳ[𝒩 ]) = |𝑀 | · deg∃-semrig (𝒩 ).

Theorem 5. For any 𝐸-definable composition ℳ[𝒩 ] the following condi-
tions hold:

deg∃-syntrig (ℳ[𝒩 ]) = deg∃-syntrig (ℳ),

if 𝑁 = dcl(∅), and

deg∃-syntrig (ℳ[𝒩 ]) = |𝑀 | · deg∃-syntrig (𝒩 ),

if 𝑁 ̸= dcl(∅). In particular, deg∃-syntrig (ℳ[𝒩 ]) is finite iff deg∃-syntrig (ℳ)

and 𝒩 are finite, for 𝑁 = dcl(∅), and deg∃-syntrig (𝒩 ) and ℳ are finite, for

𝑁 ̸= dcl(∅).
Proof repeats the proof of Theorem 4 replacing automorphism groups

by definable closures.

Proposition 1, (1), (2) and Theorems 4, 5 immediately imply:
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Corollary 4. For any 𝐸-definable composition ℳ[𝒩 ] and 𝑠 ∈ {sem, synt}
the following conditions are equivalent:

(1) deg∀-𝑠rig (ℳ[𝒩 ]) = 0;

(2) deg∀-𝑠rig (ℳ) = 0 and deg∀-𝑠rig (𝒩 ) = 0.

Theorem 6. For any 𝑠 ∈ {sem, synt} and 𝐸-definable composition ℳ[𝒩 ]
with

deg∀-𝑠rig (ℳ[𝒩 ]) > 0

the following conditions are equivalent:
(1) deg∀-𝑠rig (ℳ[𝒩 ]) is finite;
(2) one of the following conditions hold:
i) ℳ and 𝒩 are finite, i.e. ℳ[𝒩 ] is finite;
ii) ℳ is infinite with deg∀-𝑠rig (ℳ) = 1 and deg∀-𝑠rig (𝒩 ) = 0;

iii) ℳ is infinite and 𝒩 is finite with deg∀-𝑠rig (ℳ) ∈ 𝜔 ∖ {0, 1} and

deg∀-𝑠rig (𝒩 ) = 0;

iv) ℳ is a singleton and 𝒩 is infinite with deg∀-𝑠rig (𝒩 ) ∈ 𝜔 ∖ {0}.
Here there are the following possibilities:
a) deg∀-𝑠rig (ℳ[𝒩 ]) = (deg∀-𝑠rig (ℳ) − 1) · |𝑁 | + 1, if the case i) or iii) is

satisfied with deg∀-𝑠rig (𝒩 ) = 0;

b) deg∀-𝑠rig (ℳ[𝒩 ]) = (|𝑀 | − 1) · |𝑁 |+deg∀-𝑠rig (𝒩 ), if the case i) is satisfied

with deg∀-𝑠rig (𝒩 ) > 0;

c) deg∀-𝑠rig (ℳ[𝒩 ]) = 1, if the case ii) is satisfied;

d) deg∀-𝑠rig (ℳ[𝒩 ]) = deg∀-𝑠rig (𝒩 ), if the case iv) is satisfied.

Proof. At first we notice that deg∀-𝑠rig (ℳ) > 0 or deg∀-𝑠rig (𝒩 ) > 0 in view
of Corollary 4.

Now by the definition ℳ[𝒩 ] is finite iff ℳ and 𝒩 are finite. In such a
case we have the following possibilities:

∙ deg∀-𝑠rig (ℳ[𝒩 ]) = (deg∀-𝑠rig (ℳ)− 1) · |𝑁 |+1, if deg∀-𝑠rig (𝒩 ) = 0, since the

rigidity of ℳ[𝒩 ] can be achieved here taking all elements in deg∀-𝑠rig (ℳ)−1

copies of 𝒩 with one additional element witnessing the degree deg∀-𝑠rig (ℳ)

defining rigidly all 𝐸-classes for copies of 𝒩 which are rigid by deg∀-𝑠rig (𝒩 ) =
0; it corresponds the case i) with a);

∙ deg∀-𝑠rig (ℳ[𝒩 ]) = (|𝑀 | − 1) · |𝑁 | + deg∀-𝑠rig (𝒩 ), if deg∀-𝑠rig (𝒩 ) > 0, since
the rigidity of ℳ[𝒩 ] can be achieved here taking all elements in (|𝑀 | − 1)
copies of 𝒩 with deg∀-𝑠rig (𝒩 ) additional elements in the last copy of 𝒩 ; it
corresponds the case i) with b).

(1) ⇒ (2). Let deg∀-𝑠rig (ℳ[𝒩 ]) > 0 is finite. We can assume that ℳ is
infinite or 𝒩 is infinite. We have the following possibilities:

∙ deg∀-𝑠rig (ℳ) = 1 and deg∀-𝑠rig (𝒩 ) = 0, that is any element ofℳ[𝒩 ] rigidly

defines its 𝐸-class and all 𝐸-classes, too, by deg∀-𝑠rig (ℳ) = 1, such that all
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copies of 𝒩 in these 𝐸-classes are rigid by deg∀-𝑠rig (𝒩 ) = 0; it corresponds
the case ii) with c);

∙ deg∀-𝑠rig (ℳ) ∈ 𝜔 ∖ {0, 1} and deg∀-𝑠rig (𝒩 ) = 0; here we require that 𝒩
is finite, since otherwise we can take arbitrary many elements in some 𝐸-
classes which do not imply the rigidity in view of deg∀-𝑠rig (ℳ) ≥ 2; here we
have the case iii) with a).

∙ ℳ is a singleton and 𝒩 is infinite with deg∀-𝑠rig (𝒩 ) ∈ 𝜔 ∖ {0}, here
deg∀-𝑠rig (ℳ) = 0, ℳ[𝒩 ] ≃ 𝒩 and therefore deg∀-𝑠rig (ℳ[𝒩 ]) = deg∀-𝑠rig (𝒩 ).

If 𝒩 is infinite with deg∀-𝑠rig (𝒩 ) ∈ 𝜔 ∖ {0} and |ℳ| ≥ 2 then we can not
obtain the rigidity for all 𝐸-classes taking arbitrary many elements in some
𝐸-classes that contradicts the condition deg∀-𝑠rig (ℳ[𝒩 ]) ∈ 𝜔.

(2) ⇒ (1). Since each finite structure has finite degrees of rigidity it
suffices to show that deg∀-𝑠rig (ℳ[𝒩 ]) is finite if ℳ is infinite or 𝒩 is infinite
with the conditions ii), iii), iv). We observe that ii) implies c), iii) implies
a), and iv) implies d) confirming a finite value of that degree.

6. Conclusion

We studied possibilities for the degrees and indexes of rigidity, both for
semantical and syntactical cases. Links of these characteristics and their
possible values are described. We studied these values and dynamics for
structures in some languages, for some natural operations including disjoint
unions and compositions of structures. A series of examples illustrates
possibilities of these characteristics. It would be interesting to continue
this research describing possible values of degrees and indexes for natural
classes of structures and their theories.
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