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Annotanus. B pabore mosyuensl HeOOXOAMMOE yCJIOBHE U JOCTATOYHOE YCJIOBHE pPa3-
PEIIMMOCTH OJHOPOJHBIX PA3HOCTHBIX YPABHEHMI C ITOCTOSHHBIMK KO3 duinueHTaMu B
KJIaCCe PaIMOHAIBHBIX (QyHKIuil. HeoOXomuMbIM yCIOBHEM $IBJISIETCS OrDAHAYEHUE Ha
MHOrorpaHHuk HplOTOHA XapaKTepHCTHYeCKOro IOJMHOMAa. B JIByMEepHOM Ciydae 3TO
YCJIOBHE 3aKJII0YaeTCs B HAJIMYUHU [APAJIJIEIbHBIX CTOPOH y MHOTOyroJibHUKa. JJocrarod-
HBIM YCJIOBHEM SIBJISIETCSI PABEHCTBO HYJIIO OIIPEIEIEHHBIX CyMM KO UIMEHTOB ypaB-
HeHHsA. B ciiydae BBIIOJIHEHUS JIOCTATOYHOIO YCJIOBHS DEIIEHHEM SIBJISETCS KJIACC pa-
OMOHAJIBHLIX (OYHKINN, 3HAMEHATEN KOTOPBIX 00Pa3yIoT IOAKOJIBI[O B KOJIBIE ITOJIHMHO-
MOB. DTO IOJKOJIBI[0 MOXKeT ObITh aCCOIMHPOBAHO C I'PaHbI0 MHOrorpanHuka Hbiorona
XapaKTEePUCTUIECKOIO IOJIMHOMA yPABHEHNUSI.
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1. Introduction

The problem of finding rational solutions to difference equations was
posed more than 50 years ago. In the one-dimensional case for constant
and polynomial coefficients the problem was solved by S. Abramov [1], [2].

Attempts to generalize Abramov’s results to the multidimensional case
led to significant difficulties. In 2013, the algorithmic unsolvability of
checking the existence of rational solutions to difference equations with
polynomial coefficients was proved [11].

However, failures in the search for a general algorithm do not mean
that there cannot exist a particular algorithm for some classes of difference
equations. Thus, from the class of difference equations one should select
subclasses satisfying the conditions of necessity and sufficiency of existence
of rational solutions and search for algorithms working in these subclasses.

The aim of the paper is to find necessary and sufficient conditions
for solvability in the class of rational functions of homogeneous difference
equations with constant coefficients.
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RATIONAL SOLUTIONS TO DIFFERENCE EQUATIONS 49

Let R(z1,...,2n) = ]1\3[&723 be a rational function, where z € C",

N and D are coprime polynomials. The function R is analytic in the
complement C" \ &, where & = {z € C" : D(z) = 0}, #6 is the number of
irreducible components of &.

We write the difference equation as

P(6)R(z) =0, (1.1)

where A C Z", P(¢) = Y caPaCl ... ¢5m is the characteristic polynomial
(Laurent polynomial), § = (d1,...,d,) is the vector of atomic shift oper-
ators 0;R(z1,...,2n) = R(21,...,2i + 1,...,2,). Let us assume that the
dimension of the polyhedron Ch(A) (convex hull of the set A, which is
called the Newton polyhedron of the polynomial P) is exactly n.

If R is an arbitrary rational function, then Rp(z) := P(d)R(z) is also
rational and holomorphic in C"\ (6 —A4) :={z€C": z+a ¢ S, YVa € A}.

We will denote R is the rational solution to a difference equation if it
satisfies (1.1) for all z in the set C"\ (& — A), & is non-empty. Note
that since N and D are coprime polynomials, R cannot be analytically
continued to &. Due to the uniqueness theorem for holomorphic functions,
R is a solution to (1.1) if Rp(z) = 0 in any subdomain of the domain
C"\ (6 —-A).

We note that in the case n = 1 for the homogeneous difference equation
(1.1) there are no rational solutions. Indeed, a rational function of one
variable has a finite number of poles and there is an extreme pole z{ with
minimal (or maximal) value of Rz;. Using the method of steps [10], we
can construct an analytic continuation of the solution to the neighborhood
of 29. By identifying and listing all the poles, we are able to extend the
analytic function to a larger region in the complex plane, known as a process
of analytic continuation in the complex domain.

As an example of a rational solution in the case n = 2, let’s consider the

function )

(21— 22)

which satisfies the equation
R(z1,22) — R(z1 + 1,29+ 1)+ R(21 + 1,29) — R(21 + 2,22+ 1) =0.

The key difference between the univariate case (where n = 1) and the
multivariate case (where n > 1) is that in the multivariate case, the poles of
the rational function may be located in C™ (complex n-dimensional space)
in such a way that the method of steps cannot be used to construct the
analytic continuation of the solution.

In simpler terms, for n > 1, the poles of a rational function may be
spread out in multiple dimensions, making it difficult to extend the solution
using the usual method.
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Figure 1. The difference between the one-dimensional case (n = 1) and the
two-dimensional case (n = 2) lies in how the analytical continuation of the
solution is achieved. In the one-dimensional case, the solution can be extended
to the neighborhood of each individual pole using the method of steps. However,
in the two-dimensional case, the rational solution’s specific hyperplane, where
21 = 22, is positioned in a manner that prevents the analytical continuation from
being executed through the method of steps.

In conclusion, another related challenge pertains to characterizing the
solution space of the difference equation and determining the derivative
functions of these solutions. When transitioning from the one-dimensional
case to the multidimensional case, we encounter notable obstacles. The
rationality of the derivative function is contingent upon the geometric
properties of the Newton polyhedron associated with the characteristic
polynomial. The recent publication, [8], delves deeper into this subject
and provides additional references for further exploration.

The problem of computing the rational generating function is also a close
problem. In [7] the two-dimensional case is considered and references to
other works are given.

2. Necessary condition

The author discovered in [13] that in the two-dimensional case, Equation
1.1 can only possess rational solutions with denominators composed of lin-
ear factors of the form (z, ¢) — ¢, where g represents the normal vector to the
parallel sides of the polyhedron Ch(A). Only under such circumstances,
the singularity of the rational solution cannot be eliminated by continued
analytical continuation of the solution through the method of steps. This
finding also implies a necessary condition for the existence of a rational
solution, namely, the constraint on the Newton polyhedron of the equation’s
characteristic polynomial — it should have parallel sides.

Let’s explore how this result can be extended to the general case of any
dimension, denoted as n. It is important to note that the polyhedron Ch(A)
and the singular set & of the rational solution for (1.1) cannot intersect at
only one vertex Ch(A). If such a scenario occurred, we could construct
an analytic continuation of the solution on the irreducible component of
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RATIONAL SOLUTIONS TO DIFFERENCE EQUATIONS 51

the set & that includes the tangent point, by solving Equation 1.1 for the
corresponding summand related to that vertex.

When we refer to the relative positioning of the polyhedron Ch(A) and
the algebraic hypersurface & C C”, we are describing their relationship
in each real cross-section of the complex space, while ensuring that the
polyhedron can be parallelized. All further considerations will be made for
the case A C Z", noting that replacing z — z + a extends all conclusions
to the general case.

Figure 2. If an algebraic hypersurface is structured as a bundle and aligns with
the blue polyhedron Ch(A), it hinders the possibility of analytic continuation of
the solution. On the other hand, if the red polyhedron does not correspond with
the bundle, it is considered inconsistent and does not obstruct the analytic
continuation process.

A set of polynomials of the form

Dy(L1(2), ..., Ly_x(2)) (2.1)
can be associated with each k-dimensional plane [ = {z € C" : L;(z) =
¢i,i =1,...,n—k}. This set forms a subring within the ring of polynomials

Cl[z], which can be denoted as C;[z]. It is important to highlight that C;[z]
remains consistent regardless of the specific homogeneous linear functions
L; used to define the plane .

Consider a plane [ that does not intersect the polyhedron Ch(A) solely
at a vertex. In this scenario, the equation D;(Li(z),...,L,—r(z)) = 0
defines a hypersurface o, which cannot be eliminated using the method of
steps. Specifically, o can be characterized as a vector bundle represented
by the product 6™ *~1 x [, where the base " *~! corresponds to a surface
of dimension n — k — 1.

On the contrary, if an irreducible hypersurface o € &, intersects the set
A at more than one point (at least two), it cannot be eliminated through



52 P. V. TRISHIN

the method of steps. Let’s suppose these points are denoted as a’ € A,
a’ € A\ d'. In this case, for z € ¢ in the vicinity of a certain point 2° € o,
it follows that z + a € o, where a = a” — a/. This is due to the fact that
the neighborhood of a point acts as the uniqueness set for an irreducible
analytic set o [4]. Consequently, the polynomial D that defines o satisfies
the identity D(z + a) = D(z).

Let’s use a linear substitution L : C* — C" such that L(«) = (0,...,0,1)
and L(0) = 0, where L,(2) = zp/an (let ap, # 0) and L;(z) are ho-
mogeneous linear functions, ¢ = 1,...,n — 1. There is also a backward
substitution L=! : C* — C" such that L=1(0,...,0,1) = a and L=1(0) = 0.
Then the polynomial D can be written as D(z) = D(L™'L(z2)).

The polynomial D'(w) = D(L~!(w)) satisfies the equality

D'(w+(0,...,0,1)) = D'(w) .

Since only constants can be periodic polynomials of one variable, D’(w)
does not depend on the variable w,. This means D'(w + (0,...,0,t)) =
D'(w) holds for any t € C. Let’s now examin the behavior of the polynomial
D(z) on the layers z + ta:

D(z+ta) = D(L7'L(z + ta)) = D'(L(z + ta)) = D'(L(z2) + tL(a))) =
= D'(L(2) + (0,...,0,t)) = D'(L(z)) = D(L™'L(2)) = D(z) .
Thus, the polynomial D can be represented as a composition
D(z) = D'(L1(2), ..., Ln-1(2))

of some polynomial in n — 1 variable and homogeneous linear functions
defining the line ta. In essence, we have once again obtained a represen-
tation in the form (2.1) (k = 1) for o and the line ta cannot intersect the
polyhedron Ch(A) only at a vertex.

If & contains several irreducible hypersurfaces &’ C &, mutually impede
analytic continuation, then they satisfy the equality ¢’ + o = o, where
{o,0'} C &, a is some vector, connecting two points of A.

Then, the existence of an irreducible component ¢ in & is confirmed
since it intersects only with a particular shift A. This relies on the notable
property of an algebraic hypersurface that allows for any compact set to
be accommodated within its complement, C" \ &', as deduced from the
amoeba structure of the set &’ [5]. This guarantees the presence of an
"extreme” o as well.

Considering ¢ as an irreducible singularity of the solution, the intersec-
tion of A and o will entail at least two points, thereby validating the truth
of representation (2.1) for o. Consequently, for any other hypersurface
o’ € & connected to o by the equation ¢’ + o = o, representation (2.1)
also holds true. Similarly, representation (2.1) can be derived for any other
component o € &\ &'.
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Considering the layer [ of the curve o, it is evident that it cannot solely
intersect the polyhedron Ch(A) at a vertex. Thus, it must intersect the
polyhedron along some edge I'. When dimI" = dim [, we can select the lin-
ear functions L; = (z, ¢;) as the defining functions for [. Here, ¢; represents
the normal vectors to the adjacent hyperfaces of the face I'.

To determine the necessary normals from the entire set of normals to
the hyperfaces of Ch(A), a condition is applied: they must lie within the
normal cone to the face I'.

The cone formed by the normals to point v of the polyhedron Ch(A) is
referred to as the mormal cone, denoted as C,,. It is defined as the set of
points € R™ such that (z,a —v) <0, for all @ € Ch(A). The normal cone
Cr to a face I' is the normal cone C), to any interior point v of this face.
The dimension of the normal cone Cr is n — dim I". This cone can contain
more than n — k normals, to construct linear functions, we can choose any
n — k of them.

That is, each face of the polyhedron Ch(A) can also be associated with
a subring of polynomials Cr[z]. If I' C [ and dim! = dimT", then C;[z] =
Cr[z]. If dim! > dimT", then C;[z] C Cr[z].

Thus, polynomials from the subrings Cr[z] exhaust all factors of the
denominator of rational solutions to (1.1).

We have shown that each irreducible component o of the singular set &
of a rational solution to the Equation 1.1 is a vector bundle ¢ = ¢" %=1 x|
whose fiber is some line [ that intersects the polyhedron Ch(A) on a face.
Now we can state the theorem.

Theorem 1. If a rational function R(z) = N(z)/D(z) is a solution to
(1.1), then there is a non-empty set of planes {lj}jfl and faces {F]}ffl
of the Newton polyhedron Ch(A) of the characteristic polynomial of the
Equation 1.1, such that

1) There are inclusions
Fj C {33‘6 R™ : (x,qij) ZCZ‘j,i: 1,...,n—k(j)} Clj,

where q;j are the normals to the faces of the polyhedron Ch(A). These
normals are located in the normal cone to the faceI';, k(j) = dimT'; <
dim lj;

2) For any x € R™ and j the intersection (I; +x) N Ch(A) is not a vertex
of Ch(A);

3) The denominator D(z) is represented as the product
D(z) = Di(2) ...  Dyes(z),
of the factors of the form

Dj(z) = Dr;({z,q15), - - - » (% Gn—r(j),5)) >
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where Dr; is a polynomial in n — k(j) variables. That is
_ N(z)
IS Dry () 2 k)

R(z) (2.2)

Proof. 1) The set G is not empty and consists of a finite number of irre-
ducible algebraic hypersurfaces o, each of which is a vector bundle ¢ =
o™ k=1 x|, where the line [ intersects the polyhedron Ch(A) in a face.
From here it follows that a plane [ and a face I' of the polyhedron Ch(A)
corresponds to each hypersurface o.

Any k-dimensional face of a convex polyhedron can be represented as
the intersection of n — k hyperfaces adjacent to it. If x is the normal to
the hyperface I'" adjacent to I', v is an inner point of the face I and a € T
then (x,a —v) = 0, as v belongs to all adjacent hyperfaces. If (x,¢) = ¢,
i =1,...,n — k is the equations of adjacent hyperfaces, then a system of
these equations defines the k-dimensional plane containing the face I'. This
plane, as we have seen, is contained in the layer [ of the bundle o.

2) If there exists such x € R™ that the intersection (I + x) N Ch(A) is a
vertex of Ch(A), the irreducible curve o will admit an analytic continuation
of the solution, which contradicts the definition of a rational solution.

3) Every irreducible hypersurface o; € & is a zero set of some analytic
function Dj(z), and D(z) = Dj(2) - Dij(2), {z : Djjj(2) = 0} = &\ 0.
Since & is algebraic, Dj(z) and Dy;(z) are polynomials, where D;(z) is
irreducible.

The hypersurface o; is a vector bundle, whose layer is the k-dimensional
line [. If k = 1, then, as we have seen, the polynomial D;(w) can be
represented as a composition of the polynomial D;»(z) of n — 1 variable and
the homogeneous linear functions defining the line .

If k > 1, then there is k linearly independent vectors {a‘} such that
D;(z + ta') = D;(z), Vt € C. Here again, using linear substitution such
that L(a') = en—i, L(0) = 0, where L,_i(z) = 2,—;/a’_, (by assuming
afl_i #0),7=0,...,k —1 we can represent the polynomial D as a com-
position D(L™'L(z)) and show that the polynomial D'(w) = D(L~!(w))
is independent of k variables, i.e. D admits a representation in the form

(2.1).

Hence, each irreducible component o; € G, j = 1,...,#G6 is the zero
of the irreducible polynomial D;, which admits representation in the form
(2.1) and divides the polynomial D(z). O

The Theorem contains a necessary condition for the solvability of the
Equation 1.1 in the class of rational functions. This condition is formulated
as a restriction on the Newton polyhedron Ch(A) of the characteristic
polynomial P and is a multidimensional generalization of the parallelism
property of the sides of a polygon.
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Necessary condition: For the existence of a rational solution to Equation
1.1 it is necessary that there is at least one plane [, 1 < diml < n —1 such
that the shift | + z, for any © € R™ does not intersect Ch(A) only at a
verter.

3. Sufficient condition

The denominator of any rational solution to the difference equation
consists of two type of factors — periodic and aperiodic polynomials [6].

A polynomial IT € C[zy,..., z,] is called periodic if the following set is
infinite

Spread(IL IT) = {a € Z" : ged(I1(2), (2 + ) # 1},

and aperiodic otherwise. If I' is a face and I D I' is a plane, such that
dimlr = dimT, then Dr(z + «) = Dr(z) for all a € Ip N Z™ whence it
follows that ged(D(z), D(z + «)) = Dr(z2).

From this, it is clear that the set Spread(D,D) = Ufﬁ(lp]. NZ") is
infinite. So

Lemma 1. The denominator of a rational solution to Equation 1.1 is a
periodic polynomial.

The next idea is that the periodic factor in the denominator can be any
element of the subring Cr|[z] and to solve the Equation 1.1 one should look
for a universal numerator Np(z) such that

_ NF(Z)
DF(<Za q1>7 SRR <Z7 Qn—k‘>)
satisfies (1.1) for any denominator Dr € Cr[z].

Rr(z)

Therefore, we apply the rational function Rp(z) = g;gg
and reduce the expression to a common denominator, in the numerator we

get several terms of the form

S PNz +a) [ Dellz + Bear)s- o 2 + Brdns)

ac(lp+z)NA B

to the equation

each of which should be equal to zero. We obtain a system of homogeneous

difference equations with constant coefficients to the unknown polynomial
NF (Z):

Z palNr(z +a)=0,wherez € R" : (ir+2)NA# O
a€(lp+z)NA
(3.1)
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The existence of Np(z) depends on the compatibility of the obtained system
and solvability of each equation in the class of polynomials. A necessary
condition for this is the equality > ¢ 4mnaPa = 0 [3]. If this condition
is satisfied for all x € R™, then at least there is a zero degree solution
Nr(z) = const. Solutions Nr(z) of other degrees can be found by the
method of undetermined coefficients and by reducing the finding of Nr(z)
to a system of polynomial equations for unknown coefficients, which can be
solved using known algorithms [12]. The solution in the form (2.2) can be
obtained by reducing to a common denominator the sum (over I' faces) of
all found solutions.

Please note that if the line [r+z and the set A intersect at one point (the
necessary condition is not satisfied), then the sum »_ ac(ip+a)nA Pa has only
one term, and it is not equal to zero. Thus, we can formulate a criterion
for the existence of the solution with a denominator from the class Cr[z].

Theorem 2. The set of functions {gﬁgz%}, where Np(z) is some poly-

nomial and Dr(z) is an arbitrary element from the subring Cr|z] satisfies
(1.1) iff for any x € R

Z Pa=0,

a€(lp+z)NA

where Ir DT, dimlr = dimT.

Nr(z)
Dr(z)
and Dr(z) an arbitrary element from the subring Cr[z] can be a solution
to the Equation 1.1 if and only if the system (3.1) is joint and has a
(polynomial) solution.

Each equation of the system (3.1) is a homogeneous difference equation
with constant coefficients. According to [3], such an equation is solvable
in the class of polynomials if and only if the sum of all coefficients of this
equation is zero. At the same time, there is a solution (polynomial) of
any degree, including the zero degree (constant). So, if all equations of
the system (3.1) are solvable in the class of polynomials, then, at least, a
polynomial of degree zero satisfies the whole system of equations (3.1).

If in at least one of the equations of the system the sum of the co-
efficients is not equal to zero, then this equation is not solvable in the
class of polynomials, and the system 3.1 is inconsistent. Consequently,

Proof. As we have seen, the class { }, where Np(z) is some polynomial,

there is no such polynomial Np(z) that the whole class {g;gg} satisfies the
Equation 1.1. ]

Example 4 shows that the solvability criterion for the Equation 1.1 can
be satisfied for Ir planes such that dimir > dimI' and fails if dimipr =
dimI'. Therefore, the sufficient condition we formulate as follows.
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Sufficient condition: If there is a plane [ such that for any x € R"

Z Pa =0,

ac(l4+z)NA
then Equation 1.1 is solvable in the class of rational functions.

If a sufficient condition is met, functions of the form #(Z), where Dy(z) €

Ci[z] are solutions to the Equation 1.1. Moreover, if dim! > dimT", where
I' C [, then Ci[z] C Cr[z].

4. Examples

Example 1. Let the characteristic polynomial of the Equation 1.1 be 1+
Z?Zl Cj, then (1.1) will be written in the form

n
R(Z) + ZR(Zl’ ey 2im1, 25+ 1, 2540, ,Zn) =0. (41)
j=1

In Example 1, the Newton polyhedron of the characteristic polynomial
is a simplex. Since any plane is able to intersect the simplex at a vertex, the
necessary condition for the existence of a rational solution, as obtained in
the paper, is not fulfilled for the Equation 4.1. Consequently, this equation
cannot be solved within the class of rational functions.

Furthermore, it is noteworthy that the necessary condition for solvability
within the class of rational functions, derived in the paper, is also applicable
to the inhomogeneous equation with an entire right part. Therefore, the
inhomogeneous difference equations with a carrier A consisting of n + 1
points, investigated in [9], also lack rational solutions.

Example 2. Let’s consider the equation
Z (—DMR(z + o, ..z 4+ an) =0
o;€{0,1}
with the characteristic polynomial Zaie{071}(—1)‘°‘|C°‘.

The Newton polyhedron of the characteristic polynomial is the hyper-
cube. The hypercube has 2" vertices, 2n hyperfaces, 2”_1’“07]: k-dimensional
faces, of which C’ff are not parallel (adjacent to one vertex).

There are n one-dimensional faces at one vertex; they are not parallel.
Each such face at vertex 0 can be defined by (n — 1) equations

<aj7q,i>:O7i:]‘7"'7n7i#j7
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where ¢; = (0,...,0,—1,0,...,0),j=1,...,n.
Each such a face can be associated with a solution of the form
N(z)

Rn—l 2) =
(2) D210 251, 2415 -0 2n)

where D"~ ! is a polynomial in n — 1 variables. Substituting R"~1(2) into
the equation we obtain that the polynomial N(z) is independent of z;.
Thus, a rational solution is associated with each one-dimensional face

R"il( - N(21, o s Zj=1, Zjg1, - - - Zn)
Dnil(zla"'azjflaszrl?"'aZn)

)

where N and D"~ ! are arbitrary polynomials in (n — 1) variables. And for
each of the n hyperfaces at the vertex 0, we can associate a solution of the
form
N(z)
Di(z) "

=1,...,n.

Finally, with each of the C¥ faces of dimension k we can associate a solution
of the form N(=[k])
z
Rn—k: _
)= D)
where N and D" % are arbitrary polynomials in (n — k) variables z[k] from
the set {z1,...,2,}.

Example 3. Let’s consider the difference equation, which corresponds to
the characteristic polynomial

2—CF— P20 — GG A+ (el — 2G16aGs (4.2)

Figure 3. In Example 3 three hyperfaces and three edges satisfy the necessary
condition. Only the plane z2 + z3 = 0 satisfies the sufficient condition.

In this example, the Newton polyhedron of the characteristic polynomial
has three one-dimensional faces (edges) and three two-dimensional faces
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that satisfy the necessary condition. They are defined by three normals
q1 = (0505 _1)5 q2 = (07 17 1)7 qs = (0, _1, 1)
Hyperfaces:

(x,q1) =0,(x,q2) = 2,(x,q3) =0.

(x7q1>:0 (‘T7QQ>:2 (‘r?(II):O
(z,q2)=2 7 | (2,q3)=0 * | (z,q3)=0 ~
The criterion of the Theorem 2 holds only for the plane z3 + 29 = 0, so
the function

Edges:

___N()
D23+ 22)
is the solution. By employing the equation P(4)R(z) = 0 and the method

of undetermined coefficients, we obtain N(z) = ¢1(z2+ 23) - 21 +co(22 + 23).
It means that the rational function

R(2)

c1(ze + 23) - 21 + co(z2 + 23)

R(z) = D1(z3 + 22) ’

where ¢, cg, D! are arbitrary polynomials in one variable, satisfies the
difference equation with the characteristic polynomial (4.2).

Example 4. Let’s consider the difference equation, which corresponds to
the characteristic polynomial

4—CG—Gle -0 GG HaG -G G20 —2¢ ¢ (4.3)

All the edges and four faces Ch(A) N {z; = £1} ,ChAN {2 = £1}
of the Newton polyhedron satisfy the necessary condition. Only the plane
z3 = 0 satisfies the sufficient condition:

> pa=2-2=0, Y  pa=1-1=0,

ac{zz=—1}NA ac{z3=1}NA

> pa=4-1-1-1-1=0.
ac{zz=0}NA

So the solution is the family of rational functions with the denominator

D(z3). The numerator can also be an arbitrary polynomial in the variable

N(z3)
D(z3)

the characteristic polynomial (4.3).
The plane z3 = 0 intersects (by some shifts) Ch(A) along two faces:

z3. The function is a rational solution to the difference equation with

= [(07 L, 1)a (Oa -1, 1)] )
I'y = [(1,0,—1), (—1,0, —1)] .



60 P. V. TRISHIN

The subring Cr, [z] is formed by polynomials of the form Dr, (23 + 21, 23 —
z1) , the subring Cr,|[z] is formed by polynomials of the form Dr,(z2 —
23, —2z2 — 23). The subring Cy,,_gy[2] C Cr,[z] is formed by polynomials
of the form Dr, (w1, wp) = D(*$*2) = D(z3), on the other hand, if
we consider Cy.,_o1[z] as a subring in Cr,[z], then it will be formed by
polynomials Dr, (wy,ws) = D(*1£22) = D(z3).

Figure 4. In Example 4, all edges and 4 faces satisfy the necessary condition;
only the plane z3 = 0 satisfies the sufficient condition.

5. Conclusion

In this paper, we have established necessary and sufficient conditions for
finding the solution to Equation 1.1 within the rational functions class.

In other words, we have demonstrated that every multiplier located in
the denominator of a rational solution can be represented as an element
within the subring Cr|z], corresponding to a specific edge I' in the Newton
polyhedron of the characteristic polynomial of the difference equation.

This concept of the associated subring Cr[z] can be highly useful in
addressing the challenging and currently unresolved problem of identify-
ing periodic denominator multipliers for rational solutions to difference
equations.

The author expresses gratitude to the reviewers for their careful exam-
ination of the manuscript and valuable annotations. Additionally, the au-
thor acknowledges his supervisor V.M. Trutnev, who unfortunately passed
away before the solution was achieved, for formulating the problem.
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