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Научная статья

Необходимое и достаточное условия существования раци-
ональных решений однородных разностных уравнений с
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постоянными коэффициентами
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Аннотация. В работе получены необходимое условие и достаточное условие раз-
решимости однородных разностных уравнений с постоянными коэффициентами в
классе рациональных функций. Необходимым условием является ограничение на
многогранник Ньютона характеристического полинома. В двумерном случае это
условие заключается в наличии параллельных сторон у многоугольника. Достаточ-
ным условием является равенство нулю определенных сумм коэффициентов урав-
нения. В случае выполнения достаточного условия решением является класс ра-
циональных функций, знаменатели которых образуют подкольцо в кольце полино-
мов. Это подкольцо может быть ассоциировано с гранью многогранника Ньютона
характеристического полинома уравнения.
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1. Introduction

The problem of finding rational solutions to difference equations was
posed more than 50 years ago. In the one-dimensional case for constant
and polynomial coefficients the problem was solved by S. Abramov [1], [2].

Attempts to generalize Abramov’s results to the multidimensional case
led to significant difficulties. In 2013, the algorithmic unsolvability of
checking the existence of rational solutions to difference equations with
polynomial coefficients was proved [11].

However, failures in the search for a general algorithm do not mean
that there cannot exist a particular algorithm for some classes of difference
equations. Thus, from the class of difference equations one should select
subclasses satisfying the conditions of necessity and sufficiency of existence
of rational solutions and search for algorithms working in these subclasses.

The aim of the paper is to find necessary and sufficient conditions
for solvability in the class of rational functions of homogeneous difference
equations with constant coefficients.
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Let 𝑅(𝑧1, . . . , 𝑧𝑛) = 𝑁(𝑧1,...,𝑧𝑛)
𝐷(𝑧1,...,𝑧𝑛)

be a rational function, where 𝑧 ∈ C𝑛,
𝑁 and 𝐷 are coprime polynomials. The function 𝑅 is analytic in the
complement C𝑛 ∖S, where S = {𝑧 ∈ C𝑛 : 𝐷(𝑧) = 0}, #S is the number of
irreducible components of S.

We write the difference equation as

𝑃 (𝛿)𝑅(𝑧) = 0 , (1.1)

where 𝐴 ⊂ Z𝑛, 𝑃 (𝜁) =
∑︀

𝛼∈𝐴 𝑝𝛼𝜁
𝛼1
1 . . . 𝜁𝛼𝑛

𝑛 is the characteristic polynomial
(Laurent polynomial), 𝛿 = (𝛿1, . . . , 𝛿𝑛) is the vector of atomic shift oper-
ators 𝛿𝑖𝑅(𝑧1, . . . , 𝑧𝑛) = 𝑅(𝑧1, . . . , 𝑧𝑖 + 1, . . . , 𝑧𝑛). Let us assume that the
dimension of the polyhedron Ch(𝐴) (convex hull of the set 𝐴, which is
called the Newton polyhedron of the polynomial 𝑃 ) is exactly 𝑛.

If 𝑅 is an arbitrary rational function, then 𝑅𝑃 (𝑧) := 𝑃 (𝛿)𝑅(𝑧) is also
rational and holomorphic in C𝑛 ∖ (S−𝐴) := {𝑧 ∈ C𝑛 : 𝑧+𝛼 /∈ S, ∀𝛼 ∈ 𝐴}.

We will denote 𝑅 is the rational solution to a difference equation if it
satisfies (1.1) for all 𝑧 in the set C𝑛 ∖ (S − 𝐴), S is non-empty. Note
that since 𝑁 and 𝐷 are coprime polynomials, 𝑅 cannot be analytically
continued to S. Due to the uniqueness theorem for holomorphic functions,
𝑅 is a solution to (1.1) if 𝑅𝑃 (𝑧) = 0 in any subdomain of the domain
C𝑛 ∖ (S−𝐴).

We note that in the case 𝑛 = 1 for the homogeneous difference equation
(1.1) there are no rational solutions. Indeed, a rational function of one
variable has a finite number of poles and there is an extreme pole 𝑧01 with
minimal (or maximal) value of ℜ𝑧1. Using the method of steps [10], we
can construct an analytic continuation of the solution to the neighborhood
of 𝑧01 . By identifying and listing all the poles, we are able to extend the
analytic function to a larger region in the complex plane, known as a process
of analytic continuation in the complex domain.

As an example of a rational solution in the case 𝑛 = 2, let’s consider the
function

1

(𝑧1 − 𝑧2)
,

which satisfies the equation

𝑅(𝑧1, 𝑧2)−𝑅(𝑧1 + 1, 𝑧2 + 1) +𝑅(𝑧1 + 1, 𝑧2)−𝑅(𝑧1 + 2, 𝑧2 + 1) = 0 .

The key difference between the univariate case (where 𝑛 = 1) and the
multivariate case (where 𝑛 > 1) is that in the multivariate case, the poles of
the rational function may be located in C𝑛 (complex 𝑛-dimensional space)
in such a way that the method of steps cannot be used to construct the
analytic continuation of the solution.

In simpler terms, for 𝑛 > 1, the poles of a rational function may be
spread out in multiple dimensions, making it difficult to extend the solution
using the usual method.
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Figure 1. The difference between the one-dimensional case (𝑛 = 1) and the
two-dimensional case (𝑛 = 2) lies in how the analytical continuation of the

solution is achieved. In the one-dimensional case, the solution can be extended
to the neighborhood of each individual pole using the method of steps. However,
in the two-dimensional case, the rational solution’s specific hyperplane, where

𝑧1 = 𝑧2, is positioned in a manner that prevents the analytical continuation from
being executed through the method of steps.

In conclusion, another related challenge pertains to characterizing the
solution space of the difference equation and determining the derivative
functions of these solutions. When transitioning from the one-dimensional
case to the multidimensional case, we encounter notable obstacles. The
rationality of the derivative function is contingent upon the geometric
properties of the Newton polyhedron associated with the characteristic
polynomial. The recent publication, [8], delves deeper into this subject
and provides additional references for further exploration.

The problem of computing the rational generating function is also a close
problem. In [7] the two-dimensional case is considered and references to
other works are given.

2. Necessary condition

The author discovered in [13] that in the two-dimensional case, Equation
1.1 can only possess rational solutions with denominators composed of lin-
ear factors of the form ⟨𝑧, 𝑞⟩−𝑐, where 𝑞 represents the normal vector to the
parallel sides of the polyhedron Ch(𝐴). Only under such circumstances,
the singularity of the rational solution cannot be eliminated by continued
analytical continuation of the solution through the method of steps. This
finding also implies a necessary condition for the existence of a rational
solution, namely, the constraint on the Newton polyhedron of the equation’s
characteristic polynomial – it should have parallel sides.

Let’s explore how this result can be extended to the general case of any
dimension, denoted as 𝑛. It is important to note that the polyhedronCh(𝐴)
and the singular set S of the rational solution for (1.1) cannot intersect at
only one vertex Ch(𝐴). If such a scenario occurred, we could construct
an analytic continuation of the solution on the irreducible component of
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the set S that includes the tangent point, by solving Equation 1.1 for the
corresponding summand related to that vertex.

When we refer to the relative positioning of the polyhedron Ch(𝐴) and
the algebraic hypersurface S ⊂ C𝑛, we are describing their relationship
in each real cross-section of the complex space, while ensuring that the
polyhedron can be parallelized. All further considerations will be made for
the case 𝐴 ⊂ Z𝑛+, noting that replacing 𝑧 → 𝑧 + 𝑎 extends all conclusions
to the general case.
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Figure 2. If an algebraic hypersurface is structured as a bundle and aligns with
the blue polyhedron Ch(𝐴), it hinders the possibility of analytic continuation of
the solution. On the other hand, if the red polyhedron does not correspond with

the bundle, it is considered inconsistent and does not obstruct the analytic
continuation process.

A set of polynomials of the form

𝐷𝑙(𝐿1(𝑧), . . . , 𝐿𝑛−𝑘(𝑧)) (2.1)

can be associated with each 𝑘-dimensional plane 𝑙 = {𝑧 ∈ C𝑛 : 𝐿𝑖(𝑧) =
𝑐𝑖, 𝑖 = 1, . . . , 𝑛−𝑘}. This set forms a subring within the ring of polynomials
C[𝑧], which can be denoted as C𝑙[𝑧]. It is important to highlight that C𝑙[𝑧]
remains consistent regardless of the specific homogeneous linear functions
𝐿𝑖 used to define the plane 𝑙.

Consider a plane 𝑙 that does not intersect the polyhedron Ch(𝐴) solely
at a vertex. In this scenario, the equation 𝐷𝑙(𝐿1(𝑧), . . . , 𝐿𝑛−𝑘(𝑧)) = 0
defines a hypersurface 𝜎, which cannot be eliminated using the method of
steps. Specifically, 𝜎 can be characterized as a vector bundle represented
by the product 𝜎𝑛−𝑘−1× 𝑙, where the base 𝜎𝑛−𝑘−1 corresponds to a surface
of dimension 𝑛− 𝑘 − 1.

On the contrary, if an irreducible hypersurface 𝜎 ∈ S, intersects the set
𝐴 at more than one point (at least two), it cannot be eliminated through
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the method of steps. Let’s suppose these points are denoted as 𝑎′ ∈ 𝐴,
𝑎′′ ∈ 𝐴 ∖ 𝑎′. In this case, for 𝑧 ∈ 𝜎 in the vicinity of a certain point 𝑧0 ∈ 𝜎,
it follows that 𝑧 + 𝛼 ∈ 𝜎, where 𝛼 = 𝑎′′ − 𝑎′. This is due to the fact that
the neighborhood of a point acts as the uniqueness set for an irreducible
analytic set 𝜎 [4]. Consequently, the polynomial 𝐷 that defines 𝜎 satisfies
the identity 𝐷(𝑧 + 𝛼) ≡ 𝐷(𝑧).

Let’s use a linear substitution 𝐿 : C𝑛 → C𝑛 such that 𝐿(𝛼) = (0, . . . , 0, 1)
and 𝐿(0) = 0, where 𝐿𝑛(𝑧) = 𝑧𝑛/𝛼𝑛 (let 𝛼𝑛 ̸= 0) and 𝐿𝑖(𝑧) are ho-
mogeneous linear functions, 𝑖 = 1, . . . , 𝑛 − 1. There is also a backward
substitution 𝐿−1 : C𝑛 → C𝑛 such that 𝐿−1(0, . . . , 0, 1) = 𝛼 and 𝐿−1(0) = 0.
Then the polynomial 𝐷 can be written as 𝐷(𝑧) = 𝐷(𝐿−1𝐿(𝑧)).

The polynomial 𝐷′(𝑤) = 𝐷(𝐿−1(𝑤)) satisfies the equality

𝐷′(𝑤 + (0, . . . , 0, 1)) = 𝐷′(𝑤) .

Since only constants can be periodic polynomials of one variable, 𝐷′(𝑤)
does not depend on the variable 𝑤𝑛. This means 𝐷′(𝑤 + (0, . . . , 0, 𝑡)) =
𝐷′(𝑤) holds for any 𝑡 ∈ C. Let’s now examin the behavior of the polynomial
𝐷(𝑧) on the layers 𝑧 + 𝑡𝛼:

𝐷(𝑧 + 𝑡𝛼) = 𝐷(𝐿−1𝐿(𝑧 + 𝑡𝛼)) = 𝐷′(𝐿(𝑧 + 𝑡𝛼)) = 𝐷′(𝐿(𝑧) + 𝑡𝐿(𝛼))) =

= 𝐷′(𝐿(𝑧) + (0, . . . , 0, 𝑡)) = 𝐷′(𝐿(𝑧)) = 𝐷(𝐿−1𝐿(𝑧)) = 𝐷(𝑧) .

Thus, the polynomial 𝐷 can be represented as a composition

𝐷(𝑧) = 𝐷′(𝐿1(𝑧), . . . , 𝐿𝑛−1(𝑧))

of some polynomial in 𝑛 − 1 variable and homogeneous linear functions
defining the line 𝑡𝛼. In essence, we have once again obtained a represen-
tation in the form (2.1) (𝑘 = 1) for 𝜎 and the line 𝑡𝛼 cannot intersect the
polyhedron Ch(𝐴) only at a vertex.

If S contains several irreducible hypersurfaces S′ ⊂ S, mutually impede
analytic continuation, then they satisfy the equality 𝜎′ + 𝛼 ≡ 𝜎, where
{𝜎, 𝜎′} ⊂ S′, 𝛼 is some vector, connecting two points of 𝐴.

Then, the existence of an irreducible component 𝜎 in S′ is confirmed
since it intersects only with a particular shift 𝐴. This relies on the notable
property of an algebraic hypersurface that allows for any compact set to
be accommodated within its complement, C𝑛 ∖ S′, as deduced from the
amoeba structure of the set S′ [5]. This guarantees the presence of an
”extreme” 𝜎 as well.

Considering 𝜎 as an irreducible singularity of the solution, the intersec-
tion of 𝐴 and 𝜎 will entail at least two points, thereby validating the truth
of representation (2.1) for 𝜎. Consequently, for any other hypersurface
𝜎′ ∈ S′ connected to 𝜎 by the equation 𝜎′ + 𝛼 ≡ 𝜎, representation (2.1)
also holds true. Similarly, representation (2.1) can be derived for any other
component 𝜎 ∈ S ∖S′.

Известия Иркутского государственного университета.
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Considering the layer 𝑙 of the curve 𝜎, it is evident that it cannot solely
intersect the polyhedron Ch(𝐴) at a vertex. Thus, it must intersect the
polyhedron along some edge Γ. When dimΓ = dim 𝑙, we can select the lin-
ear functions 𝐿𝑖 = ⟨𝑧, 𝑞𝑖⟩ as the defining functions for 𝑙. Here, 𝑞𝑖 represents
the normal vectors to the adjacent hyperfaces of the face Γ.

To determine the necessary normals from the entire set of normals to
the hyperfaces of Ch(𝐴), a condition is applied: they must lie within the
normal cone to the face Γ.

The cone formed by the normals to point 𝑣 of the polyhedron Ch(𝐴) is
referred to as the normal cone, denoted as 𝐶𝑣. It is defined as the set of
points 𝑥 ∈ R𝑛 such that ⟨𝑥, 𝑎−𝑣⟩ 6 0, for all 𝑎 ∈ Ch(𝐴). The normal cone
𝐶Γ to a face Γ is the normal cone 𝐶𝑣 to any interior point 𝑣 of this face.
The dimension of the normal cone 𝐶Γ is 𝑛− dimΓ. This cone can contain
more than 𝑛− 𝑘 normals, to construct linear functions, we can choose any
𝑛− 𝑘 of them.

That is, each face of the polyhedron Ch(𝐴) can also be associated with
a subring of polynomials CΓ[𝑧]. If Γ ⊂ 𝑙 and dim 𝑙 = dimΓ, then C𝑙[𝑧] =
CΓ[𝑧]. If dim 𝑙 > dimΓ, then C𝑙[𝑧] ⊂ CΓ[𝑧].

Thus, polynomials from the subrings CΓ[𝑧] exhaust all factors of the
denominator of rational solutions to (1.1).

We have shown that each irreducible component 𝜎 of the singular set S
of a rational solution to the Equation 1.1 is a vector bundle 𝜎 = 𝜎𝑛−𝑘−1× 𝑙
whose fiber is some line 𝑙 that intersects the polyhedron Ch(𝐴) on a face.
Now we can state the theorem.

Theorem 1. If a rational function 𝑅(𝑧) = 𝑁(𝑧)/𝐷(𝑧) is a solution to

(1.1), then there is a non-empty set of planes {𝑙𝑗}#S
𝑗=1 and faces {Γ𝑗}#S

𝑗=1

of the Newton polyhedron Ch(𝐴) of the characteristic polynomial of the
Equation 1.1, such that

1) There are inclusions

Γ𝑗 ⊂ {𝑥 ∈ R𝑛 : ⟨𝑥, 𝑞𝑖𝑗⟩ = 𝑐𝑖𝑗 , 𝑖 = 1, . . . , 𝑛− 𝑘(𝑗)} ⊂ 𝑙𝑗 ,

where 𝑞𝑖𝑗 are the normals to the faces of the polyhedron Ch(𝐴). These
normals are located in the normal cone to the face Γ𝑗, 𝑘(𝑗) = dimΓ𝑗 6
dim 𝑙𝑗;

2) For any 𝑥 ∈ R𝑛 and 𝑗 the intersection (𝑙𝑗 +𝑥)∩Ch(𝐴) is not a vertex
of Ch(𝐴);

3) The denominator 𝐷(𝑧) is represented as the product

𝐷(𝑧) = 𝐷1(𝑧) · . . . ·𝐷#S(𝑧) ,

of the factors of the form

𝐷𝑗(𝑧) = 𝐷Γ𝑗 (⟨𝑧, 𝑞1𝑗⟩, . . . , ⟨𝑧, 𝑞𝑛−𝑘(𝑗),𝑗⟩) ,
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where 𝐷Γ𝑗 is a polynomial in 𝑛− 𝑘(𝑗) variables. That is

𝑅(𝑧) =
𝑁(𝑧)∏︀#S

𝑗=1𝐷Γ𝑗 (⟨𝑧, 𝑞1𝑗⟩, . . . , ⟨𝑧, 𝑞𝑛−𝑘(𝑗),𝑗⟩)
. (2.2)

Proof. 1) The set S is not empty and consists of a finite number of irre-
ducible algebraic hypersurfaces 𝜎, each of which is a vector bundle 𝜎 =
𝜎𝑛−𝑘−1 × 𝑙, where the line 𝑙 intersects the polyhedron Ch(𝐴) in a face.
From here it follows that a plane 𝑙 and a face Γ of the polyhedron Ch(𝐴)
corresponds to each hypersurface 𝜎.

Any 𝑘-dimensional face of a convex polyhedron can be represented as
the intersection of 𝑛 − 𝑘 hyperfaces adjacent to it. If 𝑥 is the normal to
the hyperface Γ′ adjacent to Γ, 𝑣 is an inner point of the face Γ and 𝑎 ∈ Γ′

then ⟨𝑥, 𝑎− 𝑣⟩ = 0, as 𝑣 belongs to all adjacent hyperfaces. If ⟨𝑥, 𝑞𝑖⟩ = 𝑐𝑖,
𝑖 = 1, . . . , 𝑛 − 𝑘 is the equations of adjacent hyperfaces, then a system of
these equations defines the 𝑘-dimensional plane containing the face Γ. This
plane, as we have seen, is contained in the layer 𝑙 of the bundle 𝜎.

2) If there exists such 𝑥 ∈ R𝑛 that the intersection (𝑙 + 𝑥) ∩Ch(𝐴) is a
vertex ofCh(𝐴), the irreducible curve 𝜎 will admit an analytic continuation
of the solution, which contradicts the definition of a rational solution.

3) Every irreducible hypersurface 𝜎𝑗 ∈ S is a zero set of some analytic
function 𝐷𝑗(𝑧), and 𝐷(𝑧) = 𝐷𝑗(𝑧) · 𝐷[𝑗](𝑧), {𝑧 : 𝐷[𝑗](𝑧) = 0} = S ∖ 𝜎𝑗 .
Since S is algebraic, 𝐷𝑗(𝑧) and 𝐷[𝑗](𝑧) are polynomials, where 𝐷𝑗(𝑧) is
irreducible.

The hypersurface 𝜎𝑗 is a vector bundle, whose layer is the 𝑘-dimensional
line 𝑙. If 𝑘 = 1, then, as we have seen, the polynomial 𝐷𝑗(𝑤) can be
represented as a composition of the polynomial 𝐷′

𝑗(𝑧) of 𝑛− 1 variable and
the homogeneous linear functions defining the line 𝑙.

If 𝑘 > 1, then there is 𝑘 linearly independent vectors {𝛼𝑖} such that
𝐷𝑗(𝑧 + 𝑡𝛼𝑖) = 𝐷𝑗(𝑧), ∀𝑡 ∈ C. Here again, using linear substitution such
that 𝐿(𝛼𝑖) = 𝑒𝑛−𝑖, 𝐿(0) = 0, where 𝐿𝑛−𝑖(𝑧) = 𝑧𝑛−𝑖/𝛼

𝑖
𝑛−𝑖 (by assuming

𝛼𝑖𝑛−𝑖 ̸= 0), 𝑖 = 0, . . . , 𝑘 − 1 we can represent the polynomial 𝐷 as a com-

position 𝐷(𝐿−1𝐿(𝑧)) and show that the polynomial 𝐷′(𝑤) = 𝐷(𝐿−1(𝑤))
is independent of 𝑘 variables, i.e. 𝐷 admits a representation in the form
(2.1).

Hence, each irreducible component 𝜎𝑗 ∈ S, 𝑗 = 1, . . . ,#S is the zero
of the irreducible polynomial 𝐷𝑗 , which admits representation in the form
(2.1) and divides the polynomial 𝐷(𝑧).

The Theorem contains a necessary condition for the solvability of the
Equation 1.1 in the class of rational functions. This condition is formulated
as a restriction on the Newton polyhedron Ch(𝐴) of the characteristic
polynomial 𝑃 and is a multidimensional generalization of the parallelism
property of the sides of a polygon.
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Necessary condition: For the existence of a rational solution to Equation
1.1 it is necessary that there is at least one plane 𝑙, 1 6 dim 𝑙 6 𝑛− 1 such
that the shift 𝑙 + 𝑥, for any 𝑥 ∈ R𝑛 does not intersect Ch(𝐴) only at a
vertex.

3. Sufficient condition

The denominator of any rational solution to the difference equation
consists of two type of factors – periodic and aperiodic polynomials [6].

A polynomial Π ∈ C[𝑧1, . . . , 𝑧𝑛] is called periodic if the following set is
infinite

Spread(Π,Π) = {𝛼 ∈ Z𝑛 : gcd(Π(𝑧),Π(𝑧 + 𝛼)) ̸= 1} ,
and aperiodic otherwise. If Γ is a face and 𝑙Γ ⊃ Γ is a plane, such that
dim 𝑙Γ = dimΓ, then 𝐷Γ(𝑧 + 𝛼) = 𝐷Γ(𝑧) for all 𝛼 ∈ 𝑙Γ ∩ Z𝑛 whence it
follows that gcd(𝐷(𝑧), 𝐷(𝑧 + 𝛼)) = 𝐷Γ(𝑧).

From this, it is clear that the set Spread(𝐷,𝐷) = ∪#S
𝑗=1(𝑙Γ𝑗 ∩ Z𝑛) is

infinite. So

Lemma 1. The denominator of a rational solution to Equation 1.1 is a
periodic polynomial.

The next idea is that the periodic factor in the denominator can be any
element of the subring CΓ[𝑧] and to solve the Equation 1.1 one should look
for a universal numerator 𝑁Γ(𝑧) such that

𝑅Γ(𝑧) =
𝑁Γ(𝑧)

𝐷Γ(⟨𝑧, 𝑞1⟩, . . . , ⟨𝑧, 𝑞𝑛−𝑘⟩)
.

satisfies (1.1) for any denominator 𝐷Γ ∈ CΓ[𝑧].

Therefore, we apply the rational function 𝑅Γ(𝑧) =
𝑁Γ(𝑧)
𝐷Γ(𝑧)

to the equation

and reduce the expression to a common denominator, in the numerator we
get several terms of the form∑︁

𝛼∈(𝑙Γ+𝑥)∩𝐴

𝑝𝛼𝑁Γ(𝑧 + 𝛼)
∏︁
𝛽

𝐷Γ(⟨𝑧 + 𝛽, 𝑞1⟩, . . . , ⟨𝑧 + 𝛽, 𝑞𝑛−𝑘⟩)

each of which should be equal to zero. We obtain a system of homogeneous
difference equations with constant coefficients to the unknown polynomial
𝑁Γ(𝑧):⎧⎨⎩ ∑︁

𝛼∈(𝑙Γ+𝑥)∩𝐴

𝑝𝛼𝑁Γ(𝑧 + 𝛼) = 0 ,where 𝑥 ∈ R𝑛 : (𝑙Γ + 𝑥) ∩𝐴 ̸= ∅

⎫⎬⎭ .

(3.1)



56 P. V. TRISHIN

The existence of 𝑁Γ(𝑧) depends on the compatibility of the obtained system
and solvability of each equation in the class of polynomials. A necessary
condition for this is the equality

∑︀
𝛼∈(𝑙Γ+𝑥)∩𝐴 𝑝𝛼 = 0 [3]. If this condition

is satisfied for all 𝑥 ∈ R𝑛, then at least there is a zero degree solution
𝑁Γ(𝑧) ≡ 𝑐𝑜𝑛𝑠𝑡. Solutions 𝑁Γ(𝑧) of other degrees can be found by the
method of undetermined coefficients and by reducing the finding of 𝑁Γ(𝑧)
to a system of polynomial equations for unknown coefficients, which can be
solved using known algorithms [12]. The solution in the form (2.2) can be
obtained by reducing to a common denominator the sum (over Γ faces) of
all found solutions.

Please note that if the line 𝑙Γ+𝑥 and the set 𝐴 intersect at one point (the
necessary condition is not satisfied), then the sum

∑︀
𝛼∈(𝑙Γ+𝑥)∩𝐴 𝑝𝛼 has only

one term, and it is not equal to zero. Thus, we can formulate a criterion
for the existence of the solution with a denominator from the class CΓ[𝑧].

Theorem 2. The set of functions {𝑁Γ(𝑧)
𝐷Γ(𝑧)

}, where 𝑁Γ(𝑧) is some poly-

nomial and 𝐷Γ(𝑧) is an arbitrary element from the subring CΓ[𝑧] satisfies
(1.1) iff for any 𝑥 ∈ R𝑛 ∑︁

𝛼∈(𝑙Γ+𝑥)∩𝐴

𝑝𝛼 = 0 ,

where 𝑙Γ ⊃ Γ, dim 𝑙Γ = dimΓ.

Proof. As we have seen, the class {𝑁Γ(𝑧)
𝐷Γ(𝑧)

}, where 𝑁Γ(𝑧) is some polynomial,

and 𝐷Γ(𝑧) an arbitrary element from the subring CΓ[𝑧] can be a solution
to the Equation 1.1 if and only if the system (3.1) is joint and has a
(polynomial) solution.

Each equation of the system (3.1) is a homogeneous difference equation
with constant coefficients. According to [3], such an equation is solvable
in the class of polynomials if and only if the sum of all coefficients of this
equation is zero. At the same time, there is a solution (polynomial) of
any degree, including the zero degree (constant). So, if all equations of
the system (3.1) are solvable in the class of polynomials, then, at least, a
polynomial of degree zero satisfies the whole system of equations (3.1).

If in at least one of the equations of the system the sum of the co-
efficients is not equal to zero, then this equation is not solvable in the
class of polynomials, and the system 3.1 is inconsistent. Consequently,

there is no such polynomial 𝑁Γ(𝑧) that the whole class {𝑁Γ(𝑧)
𝐷Γ(𝑧)

} satisfies the

Equation 1.1.

Example 4 shows that the solvability criterion for the Equation 1.1 can
be satisfied for 𝑙Γ planes such that dim 𝑙Γ > dimΓ and fails if dim 𝑙Γ =
dimΓ. Therefore, the sufficient condition we formulate as follows.
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Sufficient condition: If there is a plane 𝑙 such that for any 𝑥 ∈ R𝑛∑︁
𝛼∈(𝑙+𝑥)∩𝐴

𝑝𝛼 = 0 ,

then Equation 1.1 is solvable in the class of rational functions.

If a sufficient condition is met, functions of the form 1
𝐷𝑙(𝑧)

, where𝐷𝑙(𝑧) ∈
C𝑙[𝑧] are solutions to the Equation 1.1. Moreover, if dim 𝑙 > dimΓ, where
Γ ⊂ 𝑙, then C𝑙[𝑧] ( CΓ[𝑧].

4. Examples

Example 1. Let the characteristic polynomial of the Equation 1.1 be 1 +∑︀𝑛
𝑗=1 𝜁𝑗, then (1.1) will be written in the form

𝑅(𝑧) +

𝑛∑︁
𝑗=1

𝑅(𝑧1, . . . , 𝑧𝑗−1, 𝑧𝑗 + 1, 𝑧𝑗+1, . . . , 𝑧𝑛) = 0 . (4.1)

In Example 1, the Newton polyhedron of the characteristic polynomial
is a simplex. Since any plane is able to intersect the simplex at a vertex, the
necessary condition for the existence of a rational solution, as obtained in
the paper, is not fulfilled for the Equation 4.1. Consequently, this equation
cannot be solved within the class of rational functions.

Furthermore, it is noteworthy that the necessary condition for solvability
within the class of rational functions, derived in the paper, is also applicable
to the inhomogeneous equation with an entire right part. Therefore, the
inhomogeneous difference equations with a carrier 𝐴 consisting of 𝑛 + 1
points, investigated in [9], also lack rational solutions.

Example 2. Let’s consider the equation∑︁
𝛼𝑖∈{0,1}

(−1)|𝛼|𝑅(𝑧1 + 𝛼1, . . . , 𝑧𝑛 + 𝛼𝑛) = 0

with the characteristic polynomial
∑︀

𝛼𝑖∈{0,1}(−1)|𝛼|𝜁𝛼.

The Newton polyhedron of the characteristic polynomial is the hyper-
cube. The hypercube has 2𝑛 vertices, 2𝑛 hyperfaces, 2𝑛−𝑘𝐶𝑘𝑛 𝑘-dimensional
faces, of which 𝐶𝑘𝑛 are not parallel (adjacent to one vertex).

There are 𝑛 one-dimensional faces at one vertex; they are not parallel.
Each such face at vertex 0 can be defined by (𝑛− 1) equations

⟨𝑥, 𝑞𝑖⟩ = 0 , 𝑖 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗 ,
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where 𝑞𝑖 = (0, . . . , 0,−1, 0, . . . , 0), 𝑗 = 1, . . . , 𝑛.
Each such a face can be associated with a solution of the form

𝑅𝑛−1(𝑧) =
𝑁(𝑧)

𝐷𝑛−1(𝑧1, . . . , 𝑧𝑗−1, 𝑧𝑗+1, . . . , 𝑧𝑛)
,

where 𝐷𝑛−1 is a polynomial in 𝑛− 1 variables. Substituting 𝑅𝑛−1(𝑧) into
the equation we obtain that the polynomial 𝑁(𝑧) is independent of 𝑧𝑗 .

Thus, a rational solution is associated with each one-dimensional face

𝑅𝑛−1(𝑧) =
𝑁(𝑧1, . . . , 𝑧𝑗−1, 𝑧𝑗+1, . . . , 𝑧𝑛)

𝐷𝑛−1(𝑧1, . . . , 𝑧𝑗−1, 𝑧𝑗+1, . . . , 𝑧𝑛)
,

where 𝑁 and 𝐷𝑛−1 are arbitrary polynomials in (𝑛− 1) variables. And for
each of the 𝑛 hyperfaces at the vertex 0, we can associate a solution of the
form

𝑁(𝑧𝑗)

𝐷1(𝑧𝑗)
, 𝑗 = 1, . . . , 𝑛 .

Finally, with each of the 𝐶𝑘𝑛 faces of dimension 𝑘 we can associate a solution
of the form

𝑅𝑛−𝑘(𝑧) =
𝑁(𝑧[𝑘])

𝐷𝑛−𝑘(𝑧[𝑘])
,

where 𝑁 and 𝐷𝑛−𝑘 are arbitrary polynomials in (𝑛−𝑘) variables 𝑧[𝑘] from
the set {𝑧1, . . . , 𝑧𝑛}.
Example 3. Let’s consider the difference equation, which corresponds to
the characteristic polynomial

2− 𝜁21 − 𝜁−2
1 + 2𝜁1𝜁

2
2 − 𝜁−1

1 𝜁22 + 𝜁−1
1 𝜁2𝜁3 − 2𝜁1𝜁2𝜁3 . (4.2)

(1, 2, 0)

(2, 0, 0)

(−1, 2, 0)

(−2, 0, 0)
(−1, 1, 1)

(0, 0, 0)

2

−1

−1

−1

−2

1

2

Figure 3. In Example 3 three hyperfaces and three edges satisfy the necessary
condition. Only the plane 𝑧2 + 𝑧3 = 0 satisfies the sufficient condition.

In this example, the Newton polyhedron of the characteristic polynomial
has three one-dimensional faces (edges) and three two-dimensional faces
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that satisfy the necessary condition. They are defined by three normals
𝑞1 = (0, 0,−1), 𝑞2 = (0, 1, 1), 𝑞3 = (0,−1, 1).
Hyperfaces:

⟨𝑥, 𝑞1⟩ = 0, ⟨𝑥, 𝑞2⟩ = 2, ⟨𝑥, 𝑞3⟩ = 0 .

Edges: {︁
⟨𝑥,𝑞1⟩=0
⟨𝑥,𝑞2⟩=2 ,

{︁
⟨𝑥,𝑞2⟩=2
⟨𝑥,𝑞3⟩=0 ,

{︁
⟨𝑥,𝑞1⟩=0
⟨𝑥,𝑞3⟩=0 .

The criterion of the Theorem 2 holds only for the plane 𝑧3 + 𝑧2 = 0, so
the function

𝑅(𝑧) =
𝑁(𝑧)

𝐷1(𝑧3 + 𝑧2)

is the solution. By employing the equation 𝑃 (𝛿)𝑅(𝑧) = 0 and the method
of undetermined coefficients, we obtain 𝑁(𝑧) = 𝑐1(𝑧2+𝑧3) ·𝑧1+ 𝑐0(𝑧2+𝑧3).

It means that the rational function

𝑅(𝑧) =
𝑐1(𝑧2 + 𝑧3) · 𝑧1 + 𝑐0(𝑧2 + 𝑧3)

𝐷1(𝑧3 + 𝑧2)
,

where 𝑐1, 𝑐0, 𝐷
1 are arbitrary polynomials in one variable, satisfies the

difference equation with the characteristic polynomial (4.2).

Example 4. Let’s consider the difference equation, which corresponds to
the characteristic polynomial

4−𝜁1𝜁2−𝜁−1
1 𝜁2−𝜁1𝜁−1

2 −𝜁−1
1 𝜁−1

2 +𝜁2𝜁3−𝜁−1
2 𝜁3+2𝜁1𝜁

−1
3 −2𝜁−1

1 𝜁−1
3 . (4.3)

All the edges and four faces Ch(𝐴) ∩ {𝑧1 = ±1} ,Ch𝐴 ∩ {𝑧2 = ±1}
of the Newton polyhedron satisfy the necessary condition. Only the plane
𝑧3 = 0 satisfies the sufficient condition:∑︁

𝛼∈{𝑧3=−1}∩𝐴

𝑝𝛼 = 2− 2 = 0 ,
∑︁

𝛼∈{𝑧3=1}∩𝐴

𝑝𝛼 = 1− 1 = 0 ,

∑︁
𝛼∈{𝑧3=0}∩𝐴

𝑝𝛼 = 4− 1− 1− 1− 1 = 0 .

So the solution is the family of rational functions with the denominator
𝐷(𝑧3). The numerator can also be an arbitrary polynomial in the variable

𝑧3. The function
𝑁(𝑧3)
𝐷(𝑧3)

is a rational solution to the difference equation with

the characteristic polynomial (4.3).
The plane 𝑧3 = 0 intersects (by some shifts) Ch(𝐴) along two faces:

Γ1 = [(0, 1, 1), (0,−1, 1)] ,

Γ2 = [(1, 0,−1), (−1, 0,−1)] .
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The subring CΓ1 [𝑧] is formed by polynomials of the form 𝐷Γ1(𝑧3 + 𝑧1, 𝑧3 −
𝑧1) , the subring CΓ2 [𝑧] is formed by polynomials of the form 𝐷Γ2(𝑧2 −
𝑧3,−𝑧2 − 𝑧3). The subring C{𝑧3=0}[𝑧] ⊂ CΓ1 [𝑧] is formed by polynomials

of the form 𝐷Γ1(𝑤1, 𝑤2) = 𝐷(𝑤1+𝑤2
2 ) = 𝐷(𝑧3), on the other hand, if

we consider C{𝑧3=0}[𝑧] as a subring in CΓ2 [𝑧], then it will be formed by

polynomials 𝐷Γ2(𝑤1, 𝑤2) = 𝐷(𝑤1+𝑤2
−2 ) = 𝐷(𝑧3).

−1 −1

−1 −1
1

−1

2 −2

4

Figure 4. In Example 4, all edges and 4 faces satisfy the necessary condition;
only the plane 𝑧3 = 0 satisfies the sufficient condition.

5. Conclusion

In this paper, we have established necessary and sufficient conditions for
finding the solution to Equation 1.1 within the rational functions class.

In other words, we have demonstrated that every multiplier located in
the denominator of a rational solution can be represented as an element
within the subring CΓ[𝑧], corresponding to a specific edge Γ in the Newton
polyhedron of the characteristic polynomial of the difference equation.

This concept of the associated subring CΓ[𝑧] can be highly useful in
addressing the challenging and currently unresolved problem of identify-
ing periodic denominator multipliers for rational solutions to difference
equations.

The author expresses gratitude to the reviewers for their careful exam-
ination of the manuscript and valuable annotations. Additionally, the au-
thor acknowledges his supervisor V.M. Trutnev, who unfortunately passed
away before the solution was achieved, for formulating the problem.
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