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Abstract. Constant or nonessential extensions of elementary theories provide a pro-
ductive tool for the study and structural description of models of these theories, which
is widely used in Model Theory and its applications, both for various stable and ordered
theories, countable and uncountable theories, algebraic, geometric and relational struc-
tures and theories. Families of constants are used in Henkin’s classical construction of
model building for consistent families of formulas, for the classification of uncountable and
countable models of complete theories, and for some dynamic possibilities of countable
spectra of ordered Ehrenfeucht theories.

The paper describes the possibilities of ranks and degrees for families of constant
extensions of theories. Rank links are established for families of theories with Cantor-
Bendixson ranks for given theories. It is shown that the 𝑒-minimality of a family of
constant expansions of the theory is equivalent to the existence and uniqueness of a
nonprincipal type with a given number of variables. In particular, for strongly minimal
theories this means that the non-principal 1-type is unique over an appropriate tuple.
Relations between 𝑒-spectra of families of constant expansions of theories and ranks and
degrees are established. A model-theoretic characterization of the existence of the least
generating set is obtained.
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It is also proved that any inessential finite expansion of an o-minimal Ehrenfeucht
theory preserves the Ehrenfeucht property, and this is true for constant expansions of
dense spherically ordered theories. For the expansions under consideration, the dynamics
of the values of countable spectra is described.
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ordered theory, spherical theory
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Научная статья

Ранги, спектры и их динамика для семейств константных
обогащений теорий
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Аннотация. Описаны возможности рангов и степеней для семейств константных
расширений теорий. Установлена связь рангов для семейств теорий с рангами Канто-
ра – Бендиксона для данных теорий. Показано, что 𝑒-минимальность семейства кон-
стантных обогащений теории равносильна существованию и единственности неглав-
ного типа с данным числом переменных. В частности, для сильно минимальных
теорий это означает единственность неглавного 1-типа над подходящим кортежем.
Установлена связь 𝑒-спектров семейств константных обогащений теорий с рангами
и степенями. Получена теоретико-модельная характеризация существования наи-
меньшего порождающего множества.
Также доказано, что любое несущественное конечное обогащение o-минимальной
эренфойхтовой теории сохраняет эренфойхтовость, и это верно для константных
обогащений плотных сферически упорядоченных теорий. Для рассматриваемых обо-
гащений описана динамика значений счетных спектров.

Ключевые слова: семейство теорий, ранг, степень, константное расширение, эрен-
фойхтова теория, упорядоченная теория, сферическая теория
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1. Introduction

Constant, or nonessential expansions of elementary theories give a pro-
ductive tool for the study and structural descriptions of models of given
theories. It is broadly used in Model Theory and its applications, both
for various stable [5; 21; 22] and ordered [36] theories, countable and un-
countable theories [2;3;8;12;35], algebraic, geometric [20] and relational [4]
structures and theories. Families of constants are used in the classical
Henkin construction of models for consistent families of formulae [7], for
the classification of uncountable [6; 22] and countable models of complete
theories [29], and for some possibilities of dynamics for countable spectra
of Ehrenfeucht ordered theories [17].

Recall that for a theory 𝑇 and a cardinality 𝜆 the value 𝐼(𝑇, 𝜆) of
spectrum function is the number of pairwise non-isomorphic models of 𝑇
in the cardinality 𝜆. A theory 𝑇 is Ehrenfeucht if 𝑇 has finitely many but
more than one countable models, i.e., 1 < 𝐼(𝑇, 𝜔) < 𝜔.

In the present paper, we continue to study families of theories [24–28;
30; 31] and their rank [10; 13–15; 18; 19; 32; 33] describing possibilities of
ranks and degrees for families of finite constant expansions of theories,
their links with Cantor-Bendixson rank and 𝑒-spectra (Section 1). We
apply a general approach of constant expansions for ordered Ehrenfeucht
theories showing that the Ehrenfeuchtness and o-minimality are preserved
under finite constant expansions (Corollary 3.6), and describe the dynamics
of countable spectra 𝐼(𝑇, 𝜔) for these theories 𝑇 (Theorem 3.5). These
results are modified for finite constant expansions of Ehrenfeucht spheri-
cally ordered theories showing the possibilities for dynamics of countable
spectra (Theorem 3.9) and the preservation of Ehrenfeuchtness under these
expansions (Corollary 3.10).

Throughout the paper we consider complete first-order theories 𝑇 in
predicate languages Σ(𝑇 ) and use both the terminology on combinations
of theories, families of theories, and their ranks in [24–28;30;31;33], and on
ordered theories in [1; 9; 11;16].
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2. Expansions theories by tuples of constants and their families

Let 𝑇 be a theory in a language 𝐿, 𝑎 be a tuple of new constant symbols,
of length 𝑙(𝑎) = 𝑛. We denote by 𝒯𝑇,𝑎 the set of all expansions 𝑇 (𝑎) of 𝑇
by constants in 𝑎.

Clearly, there is a one-to-one correspondence between 𝒯𝑇,𝑎 and 𝑆𝑛(𝑇 )
preserving the topological space.

Notice that 𝒯𝑇,𝑎 is 𝐸-closed since theories in 𝒯𝑇,𝑎 preserve the theory 𝑇

and have realizations of all types in 𝑆𝑙(𝑎)(𝑇 ) so that accumulation points for
realizations of types in 𝑆𝑙(𝑎)(𝑇 ) are again realizations of types in 𝑆𝑙(𝑎)(𝑇 ).

Clearly, if 𝑇 = Th(ℳ) for a finite model ℳ then 𝒯𝑇,𝑎 is finite. More-
over, 𝒯𝑇,𝑎 is finite if 𝑇 has finitely many 𝑙(𝑎)-types, in particular, if 𝑇 is
𝜔-categorical. Conversely, if 𝒯𝑇,𝑎 is finite then there are finitely many

possibilities to substitute 𝑎 as a realization of a type 𝑝(𝑥) ∈ 𝑆𝑙(𝑎)(𝑇 ).
Therefore, 𝑆𝑙(𝑎)(𝑇 ) is finite.

Since |𝒯𝑇,𝑎| ≥ 𝜔 means that 𝒯𝑇,𝑎 contains an approximating subfamily
by [31, Theorem 6.1], we obtain the following:

Proposition 2.1. For any theory 𝑇 and a tuple 𝑎 the following condi-
tions are equivalent:

(1) 𝒯𝑇,𝑎 contains an approximating subfamily;

(2) 𝑆𝑙(𝑎)(𝑇 ) is infinite.

Ryll-Nardzewski Theorem and Proposition 2.1 immediately imply:

Corollary 2.2. For any theory 𝑇 the following conditions are equiva-
lent:

(1) for some tuple 𝑎, 𝒯𝑇,𝑎 contains an approximating subfamily;
(2) 𝑆(𝑇 ) contains nonisolated types, i.e., 𝑇 is not 𝜔-categorical and does

not have finite models.

Since |𝒯𝑇,𝑎| = |𝑆𝑙(𝑎)(𝑇 )| and RS(𝒯 ) = 0 if and only if 𝒯 is finite with
ds(𝒯 ) = |𝒯 |, we have the following:

Corollary 2.3. For any theory 𝑇 and a tuple 𝑎 with finite 𝑆𝑙(𝑎)(𝑇 ),
RS(𝒯𝑇,𝑎) = 0 and ds(𝒯𝑇,𝑎) = |𝑆𝑙(𝑎)(𝑇 )|.

Following [23], for a type 𝑝 ∈ 𝑆𝑛(𝑇 ), we denote by CB𝑛(𝑝) the Cantor–
Bendixson rank for the type 𝑝 in the compact topological space on 𝑆𝑛(𝑇 ),
CB𝑛(𝑇 ) = sup{CB𝑛(𝑝) | 𝑝 ∈ 𝑆𝑛(𝑇 )}.

Theorem 2.4. (1) For any type 𝑝 ∈ 𝑆𝑛(𝑇 ) and a tuple 𝑎 with 𝑙(𝑎) = 𝑛,
CB𝑛(𝑝) = RS𝒯𝑇,𝑎

(𝑇 ∪ 𝑝(𝑎)).
(2) For any tuple 𝑎, CB𝑙(𝑎)(𝑇 ) = RS(𝒯𝑇,𝑎).
(3) For any tuple 𝑎, if CB𝑙(𝑎)(𝑇 ) = RS(𝒯𝑇,𝑎) is an ordinal then ds(𝒯𝑇,𝑎)

equals CB-degree of 𝑆𝑙(𝑎)(𝑇 ).

Proof. (1) We show CB𝑛(𝑝) = RS𝒯𝑇,𝑎
(𝑇 ∪𝑝(𝑎)) by induction on ordinals.

If 𝑝 is isolated then both CB𝑛(𝑝) = 0 and RS𝒯𝑇,𝑎
(𝑇 ∪ 𝑝(𝑎)) = 0 witnessed
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by the principal formula 𝜙(𝑥) ∈ 𝑝: 𝑝 is an isolated point in 𝑆𝑛(𝑇 ) by 𝜙(𝑥)
and 𝑇 ∪ 𝑝(𝑎) is an isolated point in 𝒯𝑇,𝑎 by 𝜙(𝑎). For limit ordinals 𝛼
the equalities CB𝑛(𝑝) = 𝛼 = RS𝒯𝑇,𝑎

(𝑇 ∪ 𝑝(𝑎)) are followed immediately by
induction. Now if we assume that CB𝑛(𝑝) ≥ 𝛼+1 then 𝑝 is an accumulation
point for some types 𝑞 ∈ 𝑄 with CB𝑛(𝑞) ≥ 𝛼. Having RS𝒯𝑇,𝑎

(𝑇 ∪ 𝑞(𝑎)) ≥ 𝛼
by induction hypothesis and since 𝑇 ∪ 𝑝(𝑎) is an accumulation point for
{𝑇 ∪ 𝑞(𝑎) | 𝑞 ∈ 𝑄}, we obtain RS𝒯𝑇,𝑎

(𝑇 ∪ 𝑝(𝑎)) ≥ 𝛼+ 1. And vice versa, if
RS𝒯𝑇,𝑎

(𝑇 ∪ 𝑝(𝑎)) ≥ 𝛼+ 1 then 𝑇 ∪ 𝑝(𝑎) is an accumulation point for some
𝑇∪𝑞(𝑎), 𝑞 ∈ 𝑄, with RS𝒯𝑇,𝑎

(𝑇∪𝑞(𝑎)) ≥ 𝛼. Thus, 𝑝 is an accumulation point
𝑄, and having CB𝑛(𝑞) ≥ 𝛼 by induction hypothesis, we obtain CB𝑛(𝑝) ≥
𝛼+ 1.

(2) is immediately implied by (1) since both CB𝑙(𝑎)(𝑇 ) = sup{CB𝑙(𝑎)(𝑝) |
𝑝 ∈ 𝑆𝑙(𝑎)(𝑇 )} and RS(𝒯𝑇,𝑎) = sup{RS𝒯𝑇,𝑎

(𝑇 ∪ 𝑝(𝑎)) | 𝑝 ∈ 𝑆𝑙(𝑎)(𝑇 )}.
(3) is again implied by (1) since it confirms that there are equally many

limit points in 𝑆𝑙(𝑎)(𝑇 ) and in 𝒯𝑇,𝑎 of rank 𝛼 = CB𝑙(𝑎)(𝑇 ) = RS(𝒯𝑇,𝑎). 2

Corollary 2.5. For any theory 𝑇 and a tuple 𝑎 the following conditions
are equivalent:

(1) 𝒯𝑇,𝑎 is 𝑒-minimal;
(2) 𝑇 has unique nonprincipal 𝑙(𝑎)-type.

Proof. If 𝒯𝑇,𝑎 is 𝑒-minimal then it contains a unique accumulation point
by [31, Theorem 7.3], with CB𝑙(𝑎)(𝑇 ) = RS(𝒯𝑇,𝑎) = 1 and ds(𝒯𝑇,𝑎) = 1 in
view of Theorem 2.4. Since CB𝑙(𝑎)(𝑇 ) = 1 with CB-degree 1, there is a

unique nonprincipal type in 𝑆𝑙(𝑎)(𝑇 ). Conversely, having a unique accumu-
lation point in 𝑆𝑙(𝑎)(𝑇 ) we again apply Theorem 2.4 obtaining RS(𝒯𝑇,𝑎) = 1
and ds(𝒯𝑇,𝑎) = 1, i.e., 𝒯𝑇,𝑎 is 𝑒-minimal. 2

Since strongly minimal theories have at most one non-principal 1-type
over finite sets, Corollary 2.5 immediately implies the following criterion
for an expansion 𝑇 (𝑎) of a strongly minimal theory 𝑇 by a tuple 𝑎:

Corollary 2.6. For any strongly minimal theory 𝑇 , a tuple 𝑎 and an
element 𝑏 the following conditions are equivalent:

(1) 𝒯𝑇 (𝑎),𝑏 is 𝑒-minimal;
(2) 𝑇 has a nonprincipal 1-type over 𝑎.

Remark 2.7. For any strongly minimal theory 𝑇 , a tuple 𝑎 and an
element 𝑏, either 𝒯𝑇 (𝑎),𝑏 is finite or 𝑒-minimal. At the same time, clearly,
these conditions do not characterize the strong minimality, since they do
not guarantee that the sets of solutions for formulas 𝜙(𝑥, 𝑎) are finite or
cofinite. For that characterization it suffices to use the requirement that for
any formula 𝜙(𝑥, 𝑎) and sets 𝐴 there are finitely many possibilities, with
respect to 𝑛 ∈ 𝜔, for 𝑇 ∪ {𝜙(𝑏, 𝑎) | 𝑏 ∈ 𝐴} ∪ {“|𝐴| = 𝑛”} or 𝑇 ∪ {¬𝜙(𝑏, 𝑎) |
𝑏 ∈ 𝐴} ∪ {“|𝐴| = 𝑛”}.

Theorem 2.8. (1) If 𝒯𝑇,𝑎 is finite then 𝑒-Sp(𝒯𝑇,𝑎) = 0.
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(2) If 𝒯𝑇,𝑎 is infinite and has finitely many accumulation points then
𝑒-Sp(𝒯𝑇,𝑎) = ds(𝒯𝑇,𝑎).

(3) If 𝒯𝑇,𝑎 is infinite and has infinitely many accumulation points then 𝑒-

Sp(𝒯𝑇,𝑎) ≤ min{2|𝑇 |,RS(𝒯𝑇,𝑎)}, and 𝑒-Sp(𝒯𝑇,𝑎) = |RS(𝒯𝑇,𝑎)| if RS(𝒯𝑇,𝑎) is
an ordinal. Moreover, if 𝑇 is countable, then 𝑒-Sp(𝒯𝑇,𝑎)=min{2𝜔,RS(𝒯𝑇,𝑎)}.

Proof. (1) If 𝒯𝑇,𝑎 is finite then 𝒯𝑇,𝑎 consists of finitely many isolated
points which do not produce new theories. Hence 𝑒-Sp(𝒯𝑇,𝑎) = 0.

(2) Assuming that 𝒯𝑇,𝑎 is infinite and has finitely many accumulation
points, 𝒯𝑇,𝑎 contains the least generating set 𝒯0 consisting of isolating
points. Since by Theorem 2.4, CB𝑙(𝑎)(𝑇 ) = RS(𝒯𝑇,𝑎) = 1 and 𝒯0 produces
ds(𝒯𝑇,𝑎) new points, we have 𝑒-Sp(𝒯𝑇,𝑎) = ds(𝒯𝑇,𝑎).

(3) Let 𝒯𝑇,𝑎 be infinite and have infinitely many accumulation points. It
implies that CB𝑙(𝑎)(𝑇 ) ≥ 2. If CB𝑙(𝑎)(𝑇 ) is an ordinal then by Theorem 2.4,
𝒯𝑇,𝑎 contains the least generating set 𝒯0 consisting of isolating points. The

set 𝒯0 generates |CB𝑙(𝑎)(𝑇 )| < 2|𝑇 | accumulation points. Since CB𝑙(𝑎)(𝑇 ) =
RS(𝒯𝑇,𝑎), we obtain 𝑒-Sp(𝒯𝑇,𝑎) = |RS(𝒯𝑇,𝑎)|. If CB𝑙(𝑎)(𝑇 ) = ∞ then the

inequality 𝑒-Sp(𝒯𝑇,𝑎) ≤ min{2|𝑇 |,RS(𝒯𝑇,𝑎)} is obvious, since 𝒯𝑇,𝑎 can not

have more than 2|𝑇 | accumulation points.
If 𝑇 is countable then CB𝑙(𝑎)(𝑇 ) = RS(𝒯𝑇,𝑎) is either a countable ordinal,

with countably many 𝑙(𝑎)-types, of equal infinity, with continuum many
𝑙(𝑎)-types. In the latter case, by [33, Theorem 4.5], 𝑒-Sp(𝒯𝑇,𝑎) = 2𝜔. 2

The following example shows that the inequality in Theorem 2.8, (3)
can be strict.

Example 2.9. Let 𝜆 be an infinite cardinality and 𝑇𝜆 be a theory of
independent unary predicates 𝑃𝑖, 𝑖 ∈ 𝜔, expanded by 𝜆 empty additional
predicates. For any tuple 𝑎 we have CB𝑙(𝑎)(𝑇𝜆) = RS(𝒯𝑇𝜆,𝑎) = ∞, 𝑒-

Sp(𝒯𝑇𝜆,𝑎) = 2𝜔, whereas min{2|𝑇 |,RS(𝒯𝑇,𝑎)} = 2𝜆 can be unboundedly
large.

At the same time, taking a theory 𝑇 in a language with 𝜆 independent
unary predicates we obtain, for a tuple 𝑎, CB𝑙(𝑎)(𝑇 ) = RS(𝒯𝑇𝜆,𝑎) =∞ and

𝑒-Sp(𝒯𝑇𝜆,𝑎) = 2|𝑇 |.

Now we consider a countable theory 𝑇 . Since for any 𝑛 ∈ 𝜔 the
Stone space 𝑆𝑛(𝑇 ) is either at most countable, with countable CB-rank
of each element, or |𝑆𝑛(𝑇 )| = 2𝜔 with CB-rank∞, we deduce the following
theorem.

Theorem 2.10. For any countable theory 𝑇 and a tuple 𝑎 the following
conditions are equivalent:

(1) |𝑆𝑙(𝑎)(𝑇 )| ≤ 𝜔;
(2) |𝒯𝑇,𝑎| ≤ 𝜔;
(3) RS(𝒯𝑇,𝑎) is a (countable) ordinal;
(4) 𝑒-Sp(𝒯𝑇,𝑎) ≤ 𝜔.
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Proof. (1) ⇔ (2) follows in view of |𝑆𝑙(𝑎)(𝑇 )| = |𝒯𝑇,𝑎|. (2) ⇒ (3)
holds since if |RS(𝒯𝑇,𝑎)| > 𝜔 then there is a 2-tree of sentences producing
|𝒯𝑇,𝑎| = 2𝜔. Assuming |RS(𝒯𝑇,𝑎)| ≤ 𝜔 we obtain at most countably many
accumulation points implying |𝒯𝑇,𝑎| ≤ 𝜔 and thus we have (3) ⇒ (2).
Finally, (2) ⇒ (4) is obvious, and (4) ⇒ (3) is satisfied in view of [33,
Theorem 4.5]. 2

Theorem 2.10 immediately implies the following:
Corollary 2.11. For any countable theory 𝑇 the following conditions

are equivalent:
(1) 𝑇 is small, i.e., |𝑆(𝑇 )| = 𝜔;
(2) for any tuple 𝑎, |𝒯𝑇,𝑎| ≤ 𝜔;
(3) for any tuple 𝑎, RS(𝒯𝑇,𝑎) is a (countable) ordinal;
(4) for any tuple 𝑎, 𝑒-Sp(𝒯𝑇,𝑎) ≤ 𝜔.

Recall the following theorem.

Theorem 2.12. [24]. If 𝒯 ′
0 is a generating set for an 𝐸-closed set 𝒯0

then the following conditions are equivalent:
(1) 𝒯 ′

0 is the least generating set for 𝒯0;
(2) 𝒯 ′

0 is a minimal generating set for 𝒯0;
(3) any theory in 𝒯 ′

0 is isolated by some set (𝒯 ′
0 )𝜙, i.e., for any 𝑇 ∈ 𝒯 ′

0

there is 𝜙 ∈ 𝑇 such that (𝒯 ′
0 )𝜙 = {𝑇};

(4) any theory in 𝒯 ′
0 is isolated by some set (𝒯0)𝜙, i.e., for any 𝑇 ∈ 𝒯 ′

0

there is 𝜙 ∈ 𝑇 such that (𝒯0)𝜙 = {𝑇}.

Applying Theorem 2.12 for the families 𝒯𝑇,𝑎, which are always 𝐸-closed,
we obtain the following:

Theorem 2.13. For any countable theory 𝑇 the following conditions
are equivalent:

(1) for any tuple 𝑎, 𝒯𝑇,𝑎 has the least generating set;
(2) 𝑇 has a prime model.
Proof. If the families 𝒯𝑇,𝑎 have the least generating sets then, by The-

orem 2.12, each consistent formula 𝜙(𝑥) is implied by a principal one.
Therefore, 𝑇 has a prime model. Conversely, having a prime model we
obtain, for each 𝑎, a generating subset 𝒯 ⊆ 𝒯𝑇,𝑎 consisting of isolated
points correspondent to principal formulas. Thus, by Theorem 2.12, 𝒯𝑇,𝑎
has the least generating set. 2

Remark 2.14. Since there are many countable theories with prime
models and continuum many types (see, for instance [29, Chapter 7]), the
items in Theorem 2.13 are not equivalent to the items in Corollary 2.11.

At the same time, arguments of Theorem 2.13 for a fixed 𝑎 imply that
𝒯𝑇,𝑎 has the least generating set if and only if each consistent 𝑇 -formula
𝜙(𝑥) with 𝑙(𝑥) = 𝑙(𝑎) is forced by some principal one.



128 B. SH.KULPESHOV, S.V. SUDOPLATOV

3. Constant expansions of ordered theories and dynamics of
their countable spectra

Definition. Let 𝑀 is a weakly o-minimal structure, 𝐴 ⊆ 𝑀 , 𝑀 is
|𝐴|+-saturated, and 𝑝, 𝑞 ∈ 𝑆1(𝐴) are non-algebraic types. We say that 𝑝
is not weakly orthogonal to 𝑞 (𝑝 ̸⊥𝑤 𝑞) if there are an 𝐿𝐴-formula 𝐻(𝑥, 𝑦),
𝛼 ∈ 𝑝(𝑀), and 𝛽1, 𝛽2 ∈ 𝑞(𝑀) such that 𝛽1 ∈ 𝐻(𝑀,𝛼) and 𝛽2 ̸∈ 𝐻(𝑀,𝛼).

In other words, 𝑝 is weakly orthogonal to 𝑞 (𝑝 ⊥𝑤 𝑞) if 𝑝(𝑥) ∪ 𝑞(𝑦) has a
unique extension to a complete 2-type over 𝐴.

Observe that in the o-minimal case 𝑝 ̸⊥𝑤 𝑞 iff there exists an 𝐴-definable
strictly monotonic bijection 𝑓 : 𝑝(𝑀)→ 𝑞(𝑀).

Lemma 3.1. [1] Let 𝑇 be a weakly o-minimal theory, 𝑀 |= 𝑇 , 𝐴 ⊆𝑀 .
Then the non-weak orthogonality relation ̸⊥𝑤 is an equivalence relation on
𝑆1(𝐴).

Let 𝐴 be an arbitrary subset of a linearly ordered structure 𝑀 . We
denote by 𝐴+ (respectively, 𝐴−) the set of elements 𝑏 ∈ 𝑀 with 𝐴 < 𝑏
(𝑏 < 𝐴).

Definition [1]. Let 𝑀 be a weakly o-minimal structure, 𝐴 ⊆ 𝑀 , 𝑝 ∈
𝑆1(𝐴) be non-algebraic. We say 𝑝 is quasirational-to-right (left) if there is a
convex 𝐿𝐴-formula 𝑈𝑝(𝑥) ∈ 𝑝 such that for any sufficiently saturated model
𝑁 ≻ 𝑀 , 𝑈𝑝(𝑁)+ = 𝑝(𝑁)+ (𝑈𝑝(𝑁)− = 𝑝(𝑁)−). A non-isolated 1-type is
called quasirational if it either quasirational-to-right or quasirational-to-left.
A non-quasirational non-isolated 1-type is called irrational.

Obviously, an 1-type being simultaneously quasirational-to-right and
quasirational-to-left is isolated. We say a quasirational-to-right (left) type
𝑝 is said to be rational-to-right (left) if 𝑈𝑝(𝑥) = 𝑥 < 𝑏 (𝑈𝑝(𝑥) = 𝑥 > 𝑏) for
some 𝑏 ∈ dcl(𝐴) ∪ {∞,−∞}. Observe that in an o-minimal structure any
quasirational 1-type is rational.

Proposition 3.2 [1]. Let 𝑇 be a weakly o-minimal theory, 𝑀 |= 𝑇 ,
𝐴 ⊆𝑀 , 𝑝, 𝑞 ∈ 𝑆1(𝐴) be non-algebraic, 𝑝 ̸⊥𝑤 𝑞. Then:

(1) 𝑝 is irrational ⇔ 𝑞 is irrational;
(2) 𝑝 is quasirational ⇔ 𝑞 is quasirational.

Example 3.3. We consider the known Ehrenfeucht’s example: 𝑀 =
⟨Q, <, 𝑐𝑘⟩𝑘∈𝜔, where 𝑐𝑘 < 𝑐𝑘+1 for each 𝑘 ∈ 𝜔 and lim𝑘→∞ 𝑐𝑘 =∞. Let 𝑝(𝑥)
be a type closed under deducibility and isolated by the set {𝑐𝑘 < 𝑥 | 𝑘 ∈ 𝜔}
of formulas. Clearly, 𝑝 ∈ 𝑆1(∅) and 𝑝 is non-isolated. It is known that
Th(𝑀) has exactly three countable models: in the first case the type 𝑝 is
omitted; in the second case there is a countable model 𝑀1 ≻𝑀 such that
𝑝(𝑀1) has the order type [0, 1) ∩ Q; in the third case there is a countable
model 𝑀2 ≻𝑀 such that 𝑝(𝑀2) has the order type (0, 1) ∩ Q. Clearly, 𝑀
is an o-minimal structure, and 𝑝 is rational-to-right.
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Now we expand the given theory by a constant 𝑎 ∈𝑀1 distinguishing the
least element of 𝑝(𝑀1). Then 𝑇1 = 𝑇ℎ(⟨𝑀1, 𝑎⟩) ⊃ 𝑇 = 𝑇ℎ(𝑀). Obviously,
𝑇1 is also o-minimal and 𝐼(𝑇1, 𝜔) = 3, i.e., 𝑇1 is also Ehrenfeucht. Here
𝑝1(𝑥) := 𝑝(𝑥) ∪ {𝑥 < 𝑎} ∈ 𝑆1(𝑇1) is also rational-to-right.

Example 3.4. Consider Example 1.1.4.2 of [29]: let

𝑀=⟨Q, <, 𝑐𝑘, 𝑐′𝑘⟩𝑘∈𝜔,

where < is an ordinary relation of strict order on the set of rational numbers
Q, the constants 𝑐𝑘 form a strictly increasing sequence and the constants 𝑐′𝑘
form a strictly decreasing sequence, 𝑐𝑘 < 𝑐′𝑙 for all 𝑘, 𝑙 < 𝜔, and lim𝑘→∞ 𝑐𝑘 =√
2 = lim𝑙→∞ 𝑐′𝑙. The theory has 6 pairwise non-isomorphic countable

models, and 𝑀 is also o-minimal.
Clearly, 𝑝(𝑥) := {𝑐𝑘 < 𝑥 < 𝑐′𝑙 | 𝑘, 𝑙 ∈ 𝜔} ∈ 𝑆1(∅), and 𝑝 is irrational.
Now we expand the given theory by a constant 𝑎 ∈ 𝑀1, where 𝑀1 is a

model of 𝑇 = 𝑇ℎ(𝑀) with 𝑝(𝑀1) = {𝑎}. Let 𝑇1 = 𝑇ℎ(⟨𝑀1, 𝑎⟩). Obviously,
𝑇 ⊂ 𝑇1 and 𝑇1 is o-minimal. Consider the following sets of formulas:

𝑝1(𝑥) := 𝑝(𝑥) ∪ {𝑥 < 𝑎}, 𝑝2(𝑥) := 𝑝(𝑥) ∪ {𝑥 > 𝑎}.

Clearly, 𝑝1, 𝑝2 ∈ 𝑆1(𝑇1) and they are rational 1-types. It can easily check
that 𝐼(𝑇1, 𝜔) = 9, i.e. 𝑇1 is also Ehrenfeucht.

We say Γ ⊆ 𝑆1(∅) is independent if for any set Γ′ consisting of exactly
one realization of each type in Γ for every 𝑐′ ∈ Γ′, 𝑐′ ̸∈ dcl(Γ′ ∖ {𝑐′}). We
say 𝑝 ∈ 𝑆1(∅) depends on Γ (or 𝑝 and Γ are dependent) if Γ∪ {𝑝} is not in-
dependent. The dimension of Γ (denoted by dim(Γ)) equals the cardinality
of a maximal independent subset of Γ. Obviously, if Γ = {𝑝1, 𝑝2, . . . , 𝑝𝑠} be
a set of pairwise weakly orthogonal 1-types over ∅ then in the o-minimal
case dim(Γ) = 𝑠.

For an arbitrary o-minimal theory 𝑇 introduce the following notations:

𝑚𝑇 = dim{𝑝 ∈ 𝑆1(∅) | 𝑝 is irrational}, 𝑘𝑇 = dim{𝑝 ∈ 𝑆1(∅) | 𝑝 is rational}.

Theorem 3.5. Let 𝑇 be an o-minimal theory. If 𝑇 is Ehrenfeucht then
for any ℳ |= 𝑇 , for any 𝑛 < 𝜔 and for any �̄� = ⟨𝑎1, . . . , 𝑎𝑛⟩ ∈ 𝑀 the
theory 𝑇1 = 𝑇ℎ(⟨ℳ, �̄�⟩) is also Ehrenfeucht.

Moreover,
(1) if each 𝑎𝑖 is a realization of an isolated or a rational 1-type over ∅

then 𝐼(𝑇1, 𝜔) = 𝐼(𝑇, 𝜔);
(2) if there exist 1 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑠 ≤ 𝑛 such that 𝑎𝑖𝑡

is a realization of an irrational type 𝑝𝑖𝑡 over ∅ for every 1 ≤ 𝑡 ≤ 𝑠, where
𝑙 = dim{𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖𝑠}, then 𝐼(𝑇1, 𝜔) = 6𝑚𝑇−𝑙3𝑘𝑇+2𝑙.

Proof of Theorem 3.5. Firstly, ⟨ℳ, �̄�⟩ is also o-minimal.



130 B. SH.KULPESHOV, S.V. SUDOPLATOV

Suppose that 𝑇 is Ehrenfeucht. Then both 𝑚𝑇 and 𝑘𝑇 are finite. Laura
Mayer proved in [16] that 𝐼(𝑇, 𝜔) = 6𝑚𝑇 3𝑘𝑇 .

Case 𝑛 = 1. Obviously, 𝑎1 ∈ 𝑝(𝑀) for some 𝑝 ∈ 𝑆1(∅).
Firstly, suppose that 𝑝 is isolated. By Proposition 3.2, 𝑝 ⊥𝑤 𝑞 for any

non-isolated 𝑞 ∈ 𝑆1(∅), i.e. dcl(𝑎1) ∩ 𝑞(𝑀) = ∅. Therefore, each non-
isolated 1-type 𝑞 is uniquely extended to an 1-type 𝑞′ over {𝑎1} so that
𝑞(𝑀 ′) = 𝑞′(𝑀 ′) for any 𝑀 ′ ⪰𝑀 . Thus, 𝑚𝑇1 = 𝑚𝑇 and 𝑘𝑇1 = 𝑘𝑇 .

Suppose now that 𝑝 is non-isolated. Then 𝑝 is either rational or irra-
tional. If 𝑝 is rational then 𝑝 is either rational-to-right or rational-to-left.
Without loss of generality, suppose that 𝑝 is rational-to-right, i.e. there
exists 𝑏 ∈ 𝑀 ∪ {∞} such that for any 𝑀 ′ ⪰ 𝑀 with 𝑝(𝑀 ′) ̸= ∅ we have
sup 𝑝(𝑀 ′) = 𝑏. Then we have that the following set of formulas

𝑝′(𝑥) := 𝑝(𝑥) ∪ {𝑥 < 𝑎1}

also determines a rational-to-right type over {𝑎1}. And the formula 𝑎 <
𝑥 < 𝑏 determines an isolated 1-type over {𝑎1}. By Proposition 3.2, 𝑝 ⊥𝑤 𝑞
for any irrational 𝑞 ∈ 𝑆1(∅), and whence we have 𝑚𝑇1 = 𝑚𝑇 . If 𝑝 ̸⊥𝑤 𝑟 for
some rational 𝑟 ∈ 𝑆1(∅) then there exists an ∅-definable strictly monotonic
bijection 𝑓 : 𝑝(𝑀 ′)→ 𝑟(𝑀 ′) for any𝑀 ′ ⪰𝑀 . If 𝑓 is strictly increasing then
𝑟′(𝑥) := 𝑟(𝑥) ∪ {𝑥 < 𝑓(𝑎1)} is rational-to-right. If 𝑓 is strictly decreasing
then 𝑟′′(𝑥) := 𝑟(𝑥) ∪ {𝑥 > 𝑓(𝑎1)} is rational-to-left. If 𝑝 ⊥𝑤 𝑟 for some
rational 𝑟 ∈ 𝑆1(∅) then 𝑟 is uniquely extended to an 1-type 𝑟′ over {𝑎1} so
that 𝑟(𝑀 ′) = 𝑟′(𝑀 ′) for any 𝑀 ′ ⪰𝑀 . Thus, 𝑘𝑇1 = 𝑘𝑇 .

Suppose now that 𝑝 is irrational. Then the following sets of formulas

𝑝′(𝑥) := 𝑝(𝑥) ∪ {𝑥 < 𝑎1}, 𝑝′′(𝑥) := 𝑝(𝑥) ∪ {𝑥 > 𝑎1}

determine rational 1-types over {𝑎1}. By Lemma 2.17 [9] in the o-minimal
case 𝑝(𝑀 ′) is indiscernible over ∅ for any 𝑀 ′ ⪰𝑀 , and therefore 𝑝′ ⊥𝑤 𝑝′′.
By Proposition 3.2, 𝑝 ⊥𝑤 𝑞 for any rational 𝑞 ∈ 𝑆1(∅). Thus, we obtain
that 𝑚𝑇1 = 𝑚𝑇 − 1 and 𝑘𝑇1 = 𝑘𝑇 + 2, i.e. 𝐼(𝑇1, 𝜔) = 6𝑚𝑇−13𝑘𝑇+2.

Case 𝑛 > 1. If for any 1 ≤ 𝑖 ≤ 𝑛 𝑎𝑖 is a realization of an isolated or
rational 1-type over ∅ then 𝐼(𝑇1, 𝜔) = 𝐼(𝑇, 𝜔).

Suppose now that there exist 1 ≤ 𝑠 ≤ 𝑛 and 1 ≤ 𝑖1 < 𝑖2 < . . . <
𝑖𝑠 ≤ 𝑛 such that 𝑎𝑖𝑡 is a realization of an irrational type 𝑝𝑖𝑡 over ∅ for
every 1 ≤ 𝑡 ≤ 𝑠. Let 𝑙 = dim{𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖𝑠}. Then we assert that
𝐼(𝑇1, 𝜔) = 6𝑚𝑇−𝑙3𝑘𝑇+2𝑙.

Corollary 3.6. Let 𝒯 be the family of all o-minimal Ehrenfeucht the-
ories, 𝒯�̄� be the family of all expansions 𝑇 (�̄�) of 𝑇 by constants in �̄� for
each 𝑇 ∈ 𝒯 , where �̄� is a tuple of new constant symbols. Then 𝒯�̄� preserves
o-minimality and Ehrenfeuchtness.

Now we consider possibilities for expansions of dense spherical orders
with countably many constants [11], generalizing possibilities for linear and
circular orders.
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Definition [11; 34]. An 𝑛-ary relation 𝐾𝑛 ⊆ 𝐴𝑛 is called a 𝑛-ball, or 𝑛-
spherical, or 𝑛-circular order relation, for 𝑛 ≥ 3, if it satisfies the following
conditions:
(nso1) ∀𝑥1, . . . , 𝑥𝑛(𝐾𝑛(𝑥1, 𝑥2, . . . , 𝑥𝑛)→ 𝐾𝑛(𝑥2, . . . , 𝑥𝑛, 𝑥1));

(nso2) ∀𝑥1, . . . , 𝑥𝑛
(︂

(𝐾𝑛(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑗 , . . . , 𝑥𝑛)∧

∧𝐾𝑛(𝑥1, . . . , 𝑥𝑗 , . . . , 𝑥𝑖, . . . , 𝑥𝑛))↔
⋁︁

1≤𝑘<𝑙≤𝑛
𝑥𝑘 ≈ 𝑥𝑙

)︂
for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛;

(nso3) ∀𝑥1, . . . , 𝑥𝑛

(︃
𝐾𝑛(𝑥1, . . . , 𝑥𝑛)→

→ ∀𝑡

(︃
𝑛⋁︁
𝑖=1

𝐾𝑛(𝑥1, . . . , 𝑥𝑖−1, 𝑡, 𝑥𝑖+1, . . . , 𝑥𝑛)

)︃ )︃
;

(nso4) ∀𝑥1, . . . , 𝑥𝑛(𝐾𝑛(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑗 , . . . , 𝑥𝑛)∨

∨𝐾𝑛(𝑥1, . . . , 𝑥𝑗 , . . . , 𝑥𝑖, . . . , 𝑥𝑛)), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

The structure ⟨𝐴,𝐾𝑛⟩ is called the 𝑛-spherically ordered set, or the 𝑛-
spherical order, too.

An 𝑛-spherically ordered set ⟨𝐴,𝐾𝑛⟩, where 𝑛 ≥ 3, is called dense if it
contains at least two elements and for each (𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛) ∈ 𝐾𝑛 with
𝑎1 ̸= 𝑎2 there is 𝑏 ∈ 𝐴 ∖ {𝑎1, 𝑎2, . . . , 𝑎𝑛} such that

|= 𝐾𝑛(𝑎1, 𝑏, 𝑎3, . . . , 𝑎𝑛) ∧𝐾𝑛(𝑏, 𝑎2, 𝑎3, . . . , 𝑎𝑛).

For a (dense) 𝑛-spherically ordered set ⟨𝐴,𝐾𝑛⟩ its elementary theory
and any expansion are called (dense) 𝑛-spherical.

The following theorem describes possibilities for countable spectra of
constant expansions of dense 𝑛-spherical theories 𝑇𝑛.

Theorem 3.7. [11]. Let 𝑇 be a countable constant expansion of the
dense 𝑛-spherical theory 𝑇𝑛, 𝑛 ≥ 3. Then either 𝑇 has 2𝜔 countable models
or 𝑇 has exactly

∏︀
𝑘∈𝑛∖{1}

(2𝑘 + 2)𝑟𝑘 countable models, where 𝑟𝑘 are natural

numbers. Moreover, for any 𝑟0, . . . , 𝑟𝑛−1 ∈ 𝜔 there is an aforesaid theory
𝑇 with exactly

∏︀
𝑘∈𝑛∖{1}

(2𝑘 + 2)𝑟𝑘 countable models.

Remark 3.8. In view of Theorem 3.7, taking a dense Ehrenfeucht
3-spherical theory 𝑇 with countably many constants we have 𝐼(𝑇3, 𝜔) =
3𝑟16𝑟2 for some 𝑟1, 𝑟2 ∈ 𝜔, 𝑟1 + 𝑟2 > 0, and obtain the same dynamics, as
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in Theorem 3.5, for the values 𝐼(𝑇, 𝜔) under expansions by finitely many
new constants.

For a dense Ehrenfeucht 4-spherical theory 𝑇 with countably many con-
stants we have 𝐼(𝑇, 𝜔) = 3𝑟16𝑟210𝑟3 for some 𝑟1, 𝑟2, 𝑟3 ∈ 𝜔, 𝑟1+ 𝑟2+ 𝑟3 > 0,
[11]. Adding a constant which realizes an isolated 1-type or a nonisolated
rational 1-type, i.e., a type responsible for 3 countable models we preserve
3 countable models as in Theorem 3.5, (1).

If new constant realizes a nonisolated “irrational” 1-type, which is re-
sponsible for 6 countable models, we obtain two rational 1-types each of
which is responsible for 3 countable models as in Theorem 3.5, (2), pro-
ducing 32 = 9 countable models. If new constant realizes a nonisolated
“irrational” 1-type responsible for 10 countable models we obtain three 1-
types each of which is responsible for 6 countable models, i.e., there are
63 = 108 countable models instead of 10 ones.

Continuing the process for dense 𝑛-spherical theories, 𝑛 ≥ 5, and taking,
for instance, an “irrational” 1-type 𝑝(𝑥) responsible for 18 countable models
we can add a realization of 𝑝(𝑥) which produces 104 = 10000 countable
models instead of 18.

In general case, if a 1-type 𝑞(𝑥) is responsible for 2𝑘 + 2 countable
models, 𝑘 ∈ 𝜔∖{0, 1}, then new constant realizing 𝑞(𝑥) produces (2𝑘−1+2)𝑛

countable models.
Having several new constants realizing same 1-type we obtain a chain of

replacements of some 2𝑘𝑖 + 2 countable models by (2𝑘𝑖−1 + 2)𝑛 countable
models, where 𝑖 are the indexes for these replacements.

In view of Remark 3.8 we have the following modification of Theorem
3.5.

Theorem 3.9. Let 𝑇 be an Ehrenfeucht constant expansion of a dense
𝑛-spherical theory. Then for any ℳ |= 𝑇 , for any 𝑚 < 𝜔 and for any
�̄� = ⟨𝑎1, . . . , 𝑎𝑚⟩ ∈𝑀 the theory 𝑇1 = 𝑇ℎ(⟨ℳ, �̄�⟩) is also Ehrenfeucht.

Moreover,
(1) if each 𝑎𝑖 is a realization of an isolated 1-type or a rational 1-type over

∅, i.e., a 1-type responsible for 3 countable models, then 𝐼(𝑇1, 𝜔) = 𝐼(𝑇, 𝜔);
(2) if there exist 1 ≤ 𝑠 ≤ 𝑚 and 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑠 ≤ 𝑚 such that 𝑎𝑖𝑡

is a realization of an irrational type 𝑝𝑖𝑡 over ∅, i.e., a 1-type, responsible for
2𝑘+2 countable models, with 𝑘 ≥ 2 for every 1 ≤ 𝑡 ≤ 𝑠, then each addition
of the constant 𝑎𝑖𝑡 replaces its multiplier 2𝑘 + 2 in 𝐼(𝑇, 𝜔) by (2𝑘−1 + 2)𝑛

for 𝐼(𝑇1, 𝜔).

Corollary 3.10. Let 𝒯 be the family of all Ehrenfeucht constant expan-
sions of dense 𝑛-spherical theories, 𝒯�̄� be the family of all expansions 𝑇 (�̄�)
of 𝑇 by constants in �̄� for each 𝑇 ∈ 𝒯 , where �̄� is a tuple of new constant
symbols. Then 𝒯�̄� preserves Ehrenfeuchtness.
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4. Conclusion

We studied possibilities of rank and 𝑒-spectrum values for families of
constant expansions of theories as well as their links with Cantor-Bendixson
rank and degree. Criteria for smallness of a theory and of the existence of
a prime model are obtained. A general approach of constant expansions is
applied for ordered Ehrenfeucht theories. It is shown that Ehrenfeuchtness
and o-minimality are preserved under finite constant expansions. The dy-
namics of countable spectra 𝐼(𝑇, 𝜔) for Ehrenfeucht o-minimal theories 𝑇
is described. These results are modified for finite constant expansions of
Ehrenfeucht spherically ordered theories showing the possibilities for dy-
namics of countable spectra and the preservation of Ehrenfeuchtness under
these expansions. It would be interesting to apply the general approach
studying constant expansions and their characteristics for other natural
classes of theories.
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