
АЛГЕБРО-ЛОГИЧЕСКИЕ МЕТОДЫ В ИНФОРМАТИКЕ

И ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ

ALGEBRAIC AND LOGICAL METHODS IN COMPUTER

SCIENCE AND ARTIFICIAL INTELLIGENCE

Серия «Математика»
2020. Т. 31. С. 111—131

Онлайн-доступ к журналу:
http://mathizv.isu.ru

И З В Е С Т И Я

Иркутского
государственного

университета

УДК 510.62:004.82
MSC 68T27, 68N19
DOI https://doi.org/10.26516/1997-7670.2020.31.111

On Termination of Transactions over Semantic

Document Models ∗

A.V.Mantsivoda1,2, D.K.Ponomaryov2,3,4
1Irkutsk State University, Irkutsk, Russian Federation
2Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russian Federation
3Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russian Federation
4Novosibirsk State University, Novosibirsk, Russian Federation

Abstract. We consider the framework of Document Modeling, which lays the formal
basis for representing the document lifecycle in Business Process Management systems.
We formulate document models in the scope of the logic-based Semantic Modeling lan-
guage and study the question whether transactions given by a document model terminate
on any input. We show that in general this problem is undecidable and formulate
sufficient conditions, which guarantee decidability and tractability of computing effects
of transactions.
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1. Introduction

In [10] a Document Modeling approach has been proposed as a funda-
mental basis for document processing in Business Process Management

∗ The research was supported by the Russian Science Foundation (Grant No. 17-11-
01176)
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Systems (BPMS). Importantly, within this approach basic entities and
primitives have been identified, which are common to BPMS such as En-
terprise Resource Planning Systems, Customer Relationship Management
Systems, etc. The approach rests on the natural idea that document life-
cycle lies at the core of these systems. Typically, there is a static part,
which describes the forms and statuses of documents (i.e., a schema), and a
dynamic part, which describes changes in documents (i.e., transactions over
them). In contrast to conventional architectures of BPMS, the approach
of the Document Modeling shows that both parts can be given in a fully
declarative fashion, thus making programming unnecessary. It suffices to
describe the static part of a document model by giving a specification to
document forms and fields, and to describe the dynamic part by defining
transactions, their conditions, and effects. Then, given an initial state
of a document model (a collection of documents), the natural problem is
to compute a state (an updated collection of documents), which results
from the execution of a sequence of transactions. It is argued within the
Document Modeling approach that this problem can be solved with the
tools of formal logic such as automated inference or model checking.

In [11], the ideas of the Document Modeling have been implemented
in a logical framework in terms of the language of the Semantic Program-
ming (also known as Semantic Modeling) [1]. It has been shown that the
approach of the Document Modeling implemented this way goes beyond
the common capabilities of today’s Business Process Management Systems.
In particular, it allows for checking document models for consistency and
solving important problems like projection (e.g., what documents will be
created after an accountant performs certain actions) and planning (e.g.,
what actions must be made in order to get an item on stock). The method
follows the same line with some of the well-known approaches like Situation
Calculus [13] and similar formalisms, but it addresses the topic of Business
Process Management, which is a novel area of application for logic-based
formalisms.

Obviously, an important question is how hard the above mentioned
problems are from the computational point of view. In this respect, the
key problem is computing effects of transactions over a document model.
Transactions can be fired due to an input of an oracle (a user or an algo-
rithm, which provides some input to a document model), which in turn,
can cause other transactions to fire, and so on. Thus potentially, this can
result in an infinite chain of updates of a document model, under which
a finite resulting state is never obtained. We consider this problem in the
paper and formulate a number of complexity results, which demonstrate
the expressiveness of document models.

The contributions of this work are as follows. We refine the formalization
of the Document Modeling given in [11] and provide a more succinct for-
malization in an extension of the language of the Semantic Modelling with
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(non-standard) looping terms. We formulate the problem of transaction
termination over document models and show that in general it is undecid-
able. Then we describe a sufficient condition, which guarantees decidability.
For this we introduce a formal definition of a locally simple document
theory (the notion previously discussed in [9]) and we show that over any
such theory transaction termination is decidable. Then we estimate the
complexity of computing effects of transactions and identify a case when
they are polynomially bounded.

2. Preliminaries

Document Modeling follows the idea of declarative representation of
documents and transactions over them. A document model consists of
a description of fields, which can appear in documents (their cardinality
and default values), a definition of document forms (given as collections
of fields), and a definition of so called daemons, which specify conditions
and effects of transactions and field triggers. Transactions can be fired
on an input of a user or an external procedure (e.g., a Machine Learning
algorithm like in [14]), or they can be fired by other transactions. Field
triggers can be viewed as a special kind of transactions, but they can fire
only in the event of changing a value of some document field.

The formalism of the Document Modeling includes at least three ingre-
dients that can influence the complexity of computation. The first one is
the set of operators over field values. In real-world applications of the Doc-
ument Modeling, the language is restricted to basic arithmetic operations
(like, summation, subtraction, etc.), which can be computed efficiently.
For this reason, we do not consider the whole variety of operators over
field values in the paper. We describe only basic operations and examples
of their implementation in order to show that they make no contribution
to the complexity of computing effects of transactions. The second ingre-
dient is the query language used in the Document Modelling to describe
collections of documents, which have certain properties. Transactions can
refer to document collections given by queries and hence, the complexity
of the query language influences the complexity of computing effects of
transactions. We leave this effect out of the scope of this paper and focus
on the complexity of transactions caused solely by their relationships to
each other. For this, we adopt a simple query language implemented by
predefined document filters, which can be used in the definition of transac-
tions and are computationally simple. In the remaining part of this section,
we introduce basics of the Semantic Modeling and conventions used in this
paper. We refer an interested reader to [1]- [5] for details on the Semantic
Modeling.
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2.1. Basics of the Semantic Modeling

The language of the Semantic Modeling is a first-order language with
sorts ‘urelement’ and ‘list’ , in which only bounded quantification of the
following form is allowed:
− a restriction onto the list elements ∀x ∈ t and ∃x ∈ t;
− a restriction onto the initial segments of lists ∀x ⊑ t and ∃x ⊑ t.
where t is a list term. A list term is defined inductively via constant lists,
variables of sort ‘list’, and list functions given below. A constant list (which
can be nested) is built over constants of sort ‘urelement’ and a constant 〈 〉
of sort ‘list’, which represents the empty list. The list functions are:

head – the last element of a non-empty list and 〈 〉, otherwise;
tail – the list without the last element, for a non-empty list, and 〈 〉,
otherwise;
cons – the list obtained by adding a new last element to a list;
conc – concatenation of two lists;
Terms of sort ‘urelement’ are standard first-order terms. The predicates

∈,⊑ are allowed to appear in ∆0-formulas without any restrictions, i.e.,
they can be used in bounded quantifiers and atomic formulas.

Formulas in the language above are interpreted over hereditarily finite
list superstructures HW (M), where M is a structure. Urelements are
interpreted as distinct elements of the domain ofM and lists are interpreted
as lists over urelements and the distinguished ‘empty list’ 〈 〉. In particular,
the following equations hold in every HW (M) (the free variables below are
assumed to be universally quantified):

¬∃x x ∈ 〈 〉
cons(x, y) = cons(x′, y′) → x = x′ ∧ y = y′

tail(cons(x, y)) = x, head(cons(x, y)) = y

tail(〈 〉) = 〈 〉, head(〈 〉) = 〈 〉
conc(〈 〉, x) = conc(x, 〈 〉) = x

cons(conc(x, y), z) = conc(x, cons(y, z))

conc(conc(x, y), z) = conc(x, conc(y, z))

It was shown in [12] that for any appropriate structure M, there exists
a representation of its superstructure of finite lists HW (M), in which
the value of any variable-free list term t can be computed in time poly-
nomial in the size of t (given as as string). Throughout the text, we
omit subtleties related to the representation of hereditarily finite structures
and we assume that for any variable-free list term t one can compute a
constant list t′ in time polynomial in the size of t such that HW (M) |=
t = t′, for any structure HW (M) under consideration. For list terms
t1, . . . , tn, n > 1, we will use 〈 t1, . . . , tn 〉 as a shortcut for the term
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cons(cons(cons(〈 〉, t1), t2) . . . , tn) . . .). For a list s, the notation |s| stands
for the number of elements in s.

In [6–8], the basic language of the Semantic Modeling was extended
with non-standard list terms, which represent conditional operators (they
correspond to the common ‘if-then-else’ or ‘switch’ constructs of program-
ming languages), bounded list search, and bounded recursion (similar to
the restricted ‘while’ operator). We refer to the obtained language as L.
The non-standard terms in L are called Cond-, bSearch- and Rec-terms,
respectively, and are defined as follows. By default any standard term in
the language of the Semantic Modeling is a L-term and any formula of the
language of the Semantic Modeling is a L-formula.

If t and θ(v, x) is a L-term of sort list and L-formula, respectively, then
the expression bSearch(θ, t)(v) is a bSearch-term. It is equal to the last
element a of t(v) such that θ(v, a) holds and it is equal to t(v), otherwise
(i.e., if there is no such a).

If θ0, . . . , θn are L-formulas and q1, . . . , qn+1 are L-terms, where n > 0,
then the term Cond[θ1, q1][θ2, q2] . . . [θn, qn][qn+1](v) is a Cond-term term
with the following interpretation:

t(v) =





q1(v) if θ1(v)

q2(v) if θ2(v) ∧ ¬θ1(v)
. . .

qn(v) if θn(v) ∧ ¬θ1(v) ∧ ¬θ2(v) ∧ . . . ∧ ¬θn−1(v)

qn+1(v) if ¬θ1(v) ∧ ¬θ2(v) ∧ . . . ∧ ¬θn(v)

Finally, if f(v), h(v, y, z) and t(v) are L-terms of sort list then the expres-
sion Rec[f, h, t](v) is a Rec-term and its value is given by g(v, t) with the
following definition:
− g(v, 〈 〉) = f(v)
− g(v, cons(α, b))=h(v, g(α), b), for any lists α, b such that cons(α, b) ⊑ t

In this paper, we refine the formalization of the Document Modeling
from [11] in the language of the Semantic Modeling extended with the
above mentioned non-standard list terms. In particular, we obtain a more
succinct formalization in comparison with [11]. Further in Section 3, we
will introduce document theories, which formalize the key ingredients of
the Document Modeling approach, and in the next section we describe
conventions used in our formalization.

2.2. Conventions in Formalization of Document Theories

We use the following notions and informal conventions:

− There are pairwise disjoint finite sets FieldNames, FormNames,
FilterNames, and TransNames of constants of sort urelement, which
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provide document field, form, and filter names, and transaction names,
respectively, which can be used in the axioms of a document theory.

− Natural numbers are modelled in a straightforward way as lists consist-
ing of n empty lists, for n > 0, and 0 is represented by the empty list 〈 〉
(we also show how to model real numbers in a decimal representation
with a given precision).

− An instruction is given as a list of the form 〈 formName,CreateDoc 〉
(in which case it is called CreateDoc-instruction) or 〈value, fieldNa-
me, docID, SetF ield 〉 (a SetField-instruction), or 〈 params, docID,
transName 〉 (a transaction), where formName ∈ FormNames,
fieldName ∈ FieldNames, transName ∈ TransNames, docID rep-
resents a natural number, and value, params are some lists, which
specify a field value and transaction parameters, respectively.

− A queue is a list of instructions to be executed. A queue is updated
by daemons, which implement actions on the events such as changing
a field value in a given document or executing a transaction. Creating
a new document triggers no events.

− A situation is a list of instructions, which represents the history of
executed instructions. The last executed instruction appears first in a
situation.

− A field is given as a list, with the head being an element of FieldNames
and the tail being a list, which represents a value for a field. Every
field has a default value it gets when a new document is created.

− A document is a list of fields (the order of fields in the list is arbitrary).

− A (document) model is a list consisting of tuples 〈 sit, form, doc, ID 〉,
where ID corresponds to a natural number, doc is a document, form ∈
FormNames, and sit a situation. A model stores a version of each
document in each situation which has ever taken place. The head of
this list is a tuple, in which the situation is the current one, i.e., it
consists of instructions (a history) that have given the model.

Situations represent contexts, in which documents are created or modi-
fied, and this information can be used in querying a document model. We
note that this feature is irrelevant for the results in this paper, but we prefer
to keep situations to comply with the original formalization of document
models from [11]. A document theory consists of axioms, which specify
document fields, forms, filters (i.e., the static structure of documents and
query templates), and axioms for the dynamic part. The latter is given by
so called daemons (similar to the notion used in process programming),
which specify the instructions that must be executed whenever certain
event happens (i.e., whenever a value of a specific field in a document is
changed or a certain transaction is fired). Although formally we distinguish
between CreateDoc-, SetField-instructions and transactions, we make no
terminological difference between them when talking about the transaction
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termination problem. The results on computing effects of transactions refer
to the instructions of the form above as well.

3. Document Theories

We define a document theory T as a theory in signature Σ, where
Σ consists of the list functions introduced in Section 2.1 and the predi-
cate and function symbols introduced in the axioms below. In particu-
lar, Σ contains pairwise disjoint finite subsets of constants FieldNames,
FormNames, FilterNames, and TransNames, which specify field, form,
filter, and transaction names, which can be used in the axioms of T . The
set FormNames is supposed to be non-empty. Besides, Σ contains dis-
tinguished constants CreateDoc and SetF ield, ExecTrans, fault, which
are used to represent instructions, and fault (analogous to exception in
programming languages). We formulate the axioms of T in the language
of the Semantic Modeling with non-standard terms. Initially, this language
contains only two sorts: urelement and list. For convenience, we will assume
that there is also a subsort Real of the sort list, which corresponds to (non-
negative) real numbers with a given precision (denoted further as prec).
In the following subsection, we define the sort Real, together with the
corresponding predicates and functions, and we show how basic arithmetic
operations can be implemented via list terms. In general, there are many
such implementations possible, so the next subsection is best viewed as a
number of introductory examples to the language of the Semantic Modeling.
The only important observation is that the proposed implementation is
tractable, as stated by Lemma 2 in Section 3.2. Throughout the text we
assume that all the free variables in formulas are universally quantified.

3.1. Numeric Terms and Predicates

Let us define Nat(x) ≡ ∀t ∈ x t = 〈 〉. For a natural number n ∈ ω,
denote by n̄ the list consisting of n empty lists. Given prec ∈ ω, prec > 1,
we define a subsort Real of the sort list as follows:

Real(x) ≡ len(x) = prec ∧ ∀t ∈ x Nat(t) ∧ len(t) ⊑ 9

where len(x) is an abbreviation for the term Rec[〈 〉, cons(g(α), 〈 〉), x](x),
i.e., len(x) gives the number of elements in a list x. In other words, we
assume that a list of sort Real corresponds to the decimal representation
of a real number using prec-many digits, for a fixed number prec ∈ ω.

For lists x, i, let x.i be a shortcut for the term

Cond[¬Nat(i) ∨ ¬(i ⊑ len(x)), fault] [ Rec[〈 〉, b, i] ]
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i.e., it gives the constant list fault if i does not correspond to a natural
number or i is greater than the number of elements in x. Otherwise it gives
the i-th element of x.

For lists x, y, let x < y be the conjunction of Real(x) ∧Real(y) with

∃i ⊑ prec ( x.i ⊑ y.i ∧ x.i 6= y.i ∧ ∀j ⊑ prec (i ⊑ j → x.j = y.j) )

i.e., we assume that the first digit of a real number given by a list x is
head(x). The corresponding predicate x 6 y is defined similarly.

For a list t, let min(t) be a notation for the term

Cond[t =

= 〈 〉∨∃s ∈ t(¬Real(s)), fault] [ Rec[ head(t), Cond[b < g(α), b][g(α)], t] ]

The term max(t) is defined similarly.

Finally, for lists x, y, let x+ y be a shortcut for the term

Cond[¬(Real(x) ∧Real(y)) ∨ tail(sum) = 1, fault] [head(sum)]

where
sum ≡ Rec[〈 〈 〉, 〈 〉 〉, cons( tail(s), cons(head(g(α)), head(s)) ), prec],

s ≡ sumnat( conc( x.cons(α, b), tail(g(α)) ), y.cons(α, b) ),
sumnat(x, y) ≡
≡ Cond[10 6 conc(x, y), cons( 1,mod10(conc(x, y)) )][cons(0, conc(x, y))]

and

mod10(x) ≡
≡ head( Rec[〈 〈 〉, 〈 〉 〉, Cond[tail(g(α)) = 10, cons(tail(g(α)),

cons(head(g(α)), b))] [cons( cons(tail(g(α)), b), head(g(α)) )], x] ).

We note that negative reals and other arithmetic operations, e.g., sub-
traction, multiplication, etc., can be defined in a similar fashion.

Let prec = k+m, where k,m are some constants, which give the length
of the integer/fractional part of real numbers, respectively. For a (non-
negative) real number n, let dec(n) be the decimal representation of n such
that the number of digits in the integer and fractional part of dec(n) is
exactly k and m, respectively. This is achieved by using auxiliary zeros,
e.g., for n = 3/2 and k = m = 2, we have dec(n) = 01.50. If dec(n)
exists, let List(n) be the list representation of dec(n), i.e., the list such
that len(List(n)) = prec and for all i ∈ {1, . . . , prec} and j ∈ ω, it holds
List(n).i = j iff j is the (prec+ 1− i)-th digit in dec(n).

The following lemma sums up the properties of the given formalization:

Lemma 1 (Implementation of Arithmetic with Precision). Let HW (M)
be a list superstructure and prec ∈ ω a precision. For any (non-negative)
real numbers ai such that dec(ai) exists, for i = 1, . . . , n and n > 3:

Известия Иркутского государственного университета.
2020. Т. 31. Серия «Математика». С. 111–131



ON TERMINATION OF TRANSACTIONS OVER DOCUMENT MODELS 119

− dec(a1)∝dec(a2) iff HW (M) |= List(a1) ∝ List(a2), for ∝∈ {<,=}
− dec(a1) + dec(a2) = dec(a3) iff HW (M) |= List(a1) + List(a2) =
List(a3)
− dec(dec(a1) + dec(a2)) does not exist iff HW (M) |= List(a1) +
List(a2) = fault

For n > 1, the value of min(〈 List(a1), . . . , List(an) 〉) or max(〈 List(a1),
. . . , List(an) 〉) in HW (M) is List(a) iff a is minimal/maximal among
dec(a1), . . . , dec(an), respectively.

3.2. Document Terms

Let us introduce notations for terms, which are used to access documents
and field values in a document model.

The following term gives the last used ID for a document in a model:

GetLastDocID(model) ≡
≡ max(cons(Rec[〈 〉, cons(g(α), head(b)),model]),

i.e., it implements a search for the greatest value occurring as the head of
a tuple from model and outputs 0 if there are no documents in the model.

The next term gives the last version of a document (from a model) by
its ID. It implements search for the last tuple with a given ID (contained
in a model) and outputs the found document. If no tuple with the given
ID is present in the model, the term gives fault.

GetDocByID(docID,model) ≡
≡ Cond[doctuple = model, fault][doctuple]

where doctuple = bSearch[head(x) = docID, model].
The next term provides a field value from the last version of a document

with a given ID:

GetF ieldV alue(docID, fieldName,model) ≡
Cond[document = fault, fault][ tail(bSearch[head(x) =

= fieldName, document]) ]

where document = head(tail(GetDocByID(docID,model)))].
Finally, we define the term FindFieldPosition, which ‘splits’ a docu-

ment into a partitioned one (denoted as pdocument below), which has the
form 〈list1, list2〉 such that conc(list1, list2)=document and head(list1) is
a field with the required name (if there exists one in a document). This
auxiliary term is employed in the axioms of a document theory to implement
change of a field value in an existing document:

FindFieldPosition(document, fieldName) ≡
Cond[tail(pdocument) = 〈 〉, fault][pdocument]
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where

pdocument = Rec[ 〈 〉, Cond[ head(tail(g(α))) =
= fieldName, 〈 tail(g(α)), cons(head(g(α)), b) 〉 ]

[ 〈 cons(tail(g(α)), b), 〈 〉 〉 ], document ]
Now we define by induction the notion of document term, which gener-

alizes the definitions above.

Definition 1 (Document Term). Any standard list term (i.e., which does
not contain Cond-, bSearch, or Rec-terms) is a document term. If s, t, u, i
are document terms then s.i, s + t, min(s), max(s), GetLastDocID(s),
GetDocByID(s, t), and GetF ieldV alue(s, t, u) are document terms.

The definition of document term is complete.

An important property is that these terms are computationally tractable
as stated in the following lemma.

Lemma 2 (Tractability of Document Terms). For any prec ∈ ω, document
terms s(u), t(v), and vectors of constant lists a, b:

− a constant list c such that HW (M) |= s(a) = c, for any list super-
structure HW (M) (which contains all the urelements from s, t, a, b),
can be computed in time polynomial in the size of s(a) and prec;
− it can be decided in time polynomial in the size of s(a), t(b), and prec
whether s(a) ∝ t(b), for ∝∈ {<,=}, holds in any structure as above.

Proof Sketch. The first point of the lemma is proved by induction on the
form of the term s. For a standard list term, the claim readily follows
from Lemma 2 in [12]. For an arbitrary document term s the claim is
shown by analyzing the syntactic form of the terms .i, +, min(), max(),
GetLastDocID(), GetDocByID(), and GetF ieldV alue(). It follows from
their definition that each of these terms can be computed in polynomial
time in the size of their parameters and prec. The second point of the
lemma is shown by an analysis of the definition for <: it gives a polynomial
time algorithm to verify whether there is a segment i ⊑ prec, for which the
condition from the definition of < is true. �

3.3. Axioms of a Document Theory

A document theory has the form T = Tf ∪ Ts ∪ Td, where the theory Tf
gives predefined filters, which can be used to select collections of documents,
Ts gives definitions to document fields and forms (i.e., it describes the data
schema, hence, the subscript s), and Td describes possible transactions and
triggers, their execution rules, and instruction processing rules, which gen-
erate documents or update existing ones. Thus, Td describes the dynamics
of documents (hence, the subscript d).
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First, let us introduce auxiliary terms, which will be used in axioms of
T . The first one gives a form name of a document

Form(document) ≡ head(tail(tail(document)))

while the second one gives a list, in which the order of elements is reversed:

rev(list) ≡ Rec[〈 〉, conc(〈 b 〉, g(α)), list]

We begin with a definition of theory Tf . For each name ∈ FilterNames,
it contains a definition of a filter term of the form below. Every filter gives
a list of IDs of (the last version of) those documents from a model, which
satisfy conditions specified by the filter:

GetDocsByFiltername(fName,model, params)=

=head(Rec[〈 〉, selection, rev(model)])

where selection is a term of the form

Cond[head(b) ∈ g(α), g(α)] [filter(params, b), cons(g(α), head(b))] [g(α)]

filter(params, doc) is a formula, which represents conditions on the doc-
uments to be selected:

filter(params, doc) ≡ Form(document) = fName ∧ ϕ

where ϕ is a Boolean combination of formulas of the form s ∝ t, where ∝∈
{<,=} and s, t are document terms over variables params, doc such that
in every term GetLastDocID(m), GetDocByID(x,m), or GetF ieldV alue
(x, y,m) from s or t, we have m = model.

Next, we define the theory Ts. First of all, it contains axioms that
describe fields and cardinalities for their values:

Field(x) ≡
∨

f∈F ieldNames

( head(x) = f ∧ Card(tail(x)) )

where Card(y) is a cardinality predicate, which restricts the number of
elements in a list y. We consider the following cardinalities: the list is
empty; it contains zero or one element (we use notation‘?’ for this predi-
cate); it contains exactly one element (notation ‘!’); it contains one or more
elements. For example, ‘?’ is defined as

?(x) ≡ ∀t ∈ x cons(〈 〉, t) = x

The other predicates are defined similarly.
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Further, Ts introduces document forms by describing which fields (with
their default values) are present in a blank document of a given form:

Blank(name) = document ≡
(

∧

f∈FormNames

name 6= f ∧ document = fault)∨

∨
∨

f∈FormNames

(name = f ∧ ϕf ) (3.1)

where ϕf ≡ document = 〈 〉 or ϕf has the following form, for a non-
empty subset Nf ⊆ FieldNames (we assume that the elements of Nf are
enumerated, Nf = {1, . . . , n}):

∃x1∈document . . . ∃xn∈document
∧

i∈Nf

(head(xi) =

= i ∧ tail(xi) = defvaluei ∧ Field(xi)) ∧∀x ∈ document (
∨

i∈Nf

x = xi)

where defvaluei is a list, which respects the cardinality restriction given in
the definition of the Field(x) predicate for head(x) = i.

The definition of the theory Ts is complete.
Now we are ready to define the theory Td. It contains definitions of

daemons and a definition of a recursive Update function, which given a
queue, updates a model to a new state based on the definition of daemons.
First, we define the Update function. For the sake of readability, we split
its definition into three formulas combined with disjunction and comment
on them separately.

First of all, if the queue is not empty and the first instruction in the queue
is not a valid one (i.e., it is neither CreateDoc, SetF ield instruction, nor a
transaction name t ∈ TransNames ) the whole queue is skipped and the
model given by the Update function is the initial model. If the queue is
empty, then it is assumed that all the instructions in the queue have been
processed and thus, Update returns the value of model:

Update(initialmodel,model, queue) = model′ ≡
( head(head(queue)) 6∈ 〈CreateDoc, SetF ield, tname1, . . . , tnamek〉 ∧

queue 6= 〈 〉 ∧model′ = initialmodel )

∨ ( queue = 〈 〉 ∧model′ = model )

∨
(3.2)

where {tname1, . . . , tnamek} = TransNames, for k > 0.
Otherwise the queue contains an instruction to create a document of a

specific form, change a field value in a document having a certain ID, or
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launch a specific transaction. In the first case, a blank document of a given
form is created (which is implemented by using existential quantification)
and added to the model, the instruction is removed from the queue, and
the Update function is evaluated recursively on the resulting input. If a
blank document of a form with name formName can not be created (due
to formName 6∈ FormNames) then the queue is skipped and Update
returns the initial model:

( head(head(queue)) =

= CreateDoc ∧ ∃document document = Blank(formName) ∧
( (document = fault ∧model′ = initialmodel) ∨ (document 6= fault ∧
model′=Update(initialmodel, cons(model, newdoc), tail(queue))) ) ∨

(3.3)

where formName = head(tail(head(queue))), newdoc is a term of the form

〈 newsituation, formName, document, cons(GetLastDocID(model), 〈 〉) 〉
newsituation = cons(Situation(model), 〈 formName, CreateDoc 〉), and
Situation(model) = head(tail(tail(tail(head(model))))).

The case of SetF ield instruction in the queue is formulated similarly, but
the formalization is technically more complex, since modifying an already
existing document requires more steps than creating a fresh one:

( head(head(queue)) = SetF ield ∧ ( ( pdocument = fault ∨
¬Field(cons(newFldValue, fldName)) ) ∧model′ = initialmodel) ∨
(pdocument 6= fault ∧model′ = Update( initialmodel, cons(model,

〈 newsituation, form, updateddoc, docID 〉), extendedQueue)))
∨ (3.4)

where form = Form(GetDocByID(docID,model)), pdocument denotes
FindF ieldPosition(head(tail(GetDocByID(docID, model)),model),fldName)

and updatedDoc is a shortcut for

conc(tail(tail(pdocument)), cons(head(pdocument),

cons(newFldValue, fldName)))

in which

docID = head(tail(head(queue)))

fldName = head(tail(tail(head(queue))))

newFldValue = head(tail(tail(tail(head(queue)))))

newsituation = cons(Situation(model),
〈 newFldValue, fldName, docID, SetF ield 〉)
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Situation(model) = head(tail(tail(tail(head(model)))))

(recall the instruction modeling conventions).
Finally, extendedQueue is a shortcut for

SetF ieldTrigger(docID, fieldName, newFieldV alue,

tail(queue),model)

Thus, updatedDoc is a document with an updated field value and
extendedQueue is a sequence of instructions provided by a trigger on a
field value change. By the definition above, the whole queue is skipped
whenever there is no field with the specified name in a given document.
Note that in this case tail(pdocument) = fault holds by the definition of
FindFieldPosition term.

Finally, if head(head(queue)) is a transaction name, a call to the daemon
is made, which defines the corresponding transaction:

∨

tName∈TransNames

( head(head(queue)) = tName ∧model′ =

Update(initialmodel,model,

ExecTrans(tName, docID, params, tail(queue),model))) )

(3.5)

where docID = head(tail(head(queue))) is a document, for which the
transaction is to be executed, and params=head(tail(tail(head(queue))))
specifies parameters for the transaction.

Now we are in the position to define functions, which implement dae-
mons. Their purpose is to extend the queue with a sequence of instructions
depending on whether a field value in an existing document is changed or
a transaction is fired. Both functions have similar definitions:

SetF ieldTrigger(docID, fName, fV alue, queue,model) ≡ Φ

ExecTrans(tName, docID, params, queue,model) ≡ Ψ

where

Φ = Cond[θ1, q1], . . . , [θn, qn][queue]

and for all i ∈ {1, . . . , n}, n > 0, θi is a condition of the form

Form(GetDocByID(docID,model))=formName ∧ fName=fieldName∧ ϕ

(in this case θi is called
(formName, fieldName)-condition) such that formName ∈ FormNames,
fieldName ∈ FieldNames and qi=conc(queue, instri),
where ϕ is a Boolean combination of formulas of the form val1 ∝ val2,
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where∝∈ {<,=}, and val1, val2 are document terms over variables docID,
fV alue, model and instri (called queue extension) is a list

conc(s1, conc(s2 . . . conc(sk−1, sk) . . .)

such that

− each si for i = 1, . . . , k, k > 1 (called instruction term) is a list term
of the form 〈 〈 val, fieldName′, docID, SetF ield 〉 〉 or Rec[〈 〉, h,
DocFilter] with the definition: g(〈 〉) = 〈 〉, g(cons(α, id)) = h(id),
where h(id) = conc(〈 〈 params, id, transName 〉 〉, g(α)),
for all α, id such that cons(α, id) ⊑ DocFilter

− params is a list of the form 〈 t1, . . . , tm 〉, for m > 0, where every ti is
a document term over variables docID, fV alue,model

− fieldName′ ∈ FieldNames and val is a document term over variables
docID, fV alue,model

(then si is called (formName, fieldName′)-instruction)
− DocFilter = GetDocsByFiltername(frmName,model, p)
− p is a document term over variables docID, fV alue,model
− name ∈ FilterNames, frmName ∈ FormNames, and transName ∈

TransNames (then si is called (frmName, transName)-instruction)
Thus, changing a field value in a document may cause addition of in-

structions to the queue, which change other fields in the same document or
execute transactions over sets of documents defined by filters.

The formula Ψ is defined similarly, but with the following minor modi-
fication (we use the notations above):
− every condition θi has the form

Form(GetDocByID(docID,model)) =

= formName ∧ tName = transName ∧ ϕ

(in this case θi is called (formName, transName)-condition), where
transName ∈ TransNames

− every si is a list term of the form 〈〈 val, fieldName′, docID, SetF ield 〉〉
or Rec[〈 〉, h, DocFilter], where h is given as conc(〈 〈 params′, id,
transName 〉 〉, g(α)) or conc(〈 〈 frmName, CreateDoc 〉 〉, g(α)), or
si is of the form 〈 〈 frmName, CreateDoc 〉 〉
(in the latter two cases si is called (frmName, CreateDoc)-instruction)

− val, val1, val2, p are document terms over variables docID, params,
model and params′ is a list of the form 〈 t1, . . . , tm 〉, for m > 0, where
every ti is a document term over variables params,model.

Thus, executing a transaction over a document may cause addition
of instructions to the queue, which change fields in the document, cre-
ate new documents (of the same or different document form), or execute
transactions over sets of documents defined by filters.
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The definition of the document theory T is complete.
Let the size of T be the total size of its axioms (given as strings).

4. Termination of Transactions

The recursive definition of Update function yields the natural notion of
chase operator, which for a given document theory T and constant lists
model, queue, where queue 6= 〈 〉, outputs lists model′ and queue′ obtained
after processing the first instruction from queue (i.e., head(queue)). In
other words, for any list superstructure HW (M), it holds

HW (M) |= Update(model,model, queue)=Update(model,model′ , queue′)

where model′ is obtained from model by the definition of Update function
in T without applying recursion and either queue′ is obtained in the same
way from queue, or it holds that queue = 〈 〉. We denote this fact as
〈 model, queue 〉 7→ 〈 model′, queue′ 〉. A chase sequence wrt T for a list
〈 m0, q0 〉 of the form above is a sequence of lists 〈 m0, q0 〉, 〈 m1, q1 〉, . . .,
where 〈 mi, qi 〉 7→ 〈 mi+1, qi+1 〉, for all i > 0. A chase sequence is
terminating if it is of the form s0, . . . , sk, for some k > 1, where sk =
〈 mk, 〈 〉 〉.

In the following, we note that there may not exist a terminating chase
sequence for a given list 〈 m, q 〉 and a theory T . Then we formulate a suffi-
cient condition on the form of T , which guarantees chase termination, and
finally we estimate the complexity of computing the chase. Due to space
constraints we provide here only proof sketches. Full proofs can be found in
the extended version of the paper available at https://arxiv.org/abs/2002.
05064

Theorem 1 (Termination of Transactions is Undecidable). It is undecid-
able whether there is a terminating chase sequence for a list s = 〈 model,
queue 〉 wrt a document theory T .

Proof Sketch. The theorem is proved by a reduction of the halting problem
for Turing machines. Given a Turing machine M , we define a document
theory T , which encodes M . The theory T contains axioms, which specify
a single document form and a field used for storing the content of the tape
of M , and axioms for daemons, which encode transitions of M . Then we
define a list initqueue of instructions, which encode the first symbols of
the initial configuration of M and enforce execution of a transaction, which
launches a transition of M from the initial state. Then it can be shown
that there is a terminating chase sequence for 〈 〈 〉, initqueue 〉 iff M halts.

�

In fact, the form of the theory T used in the theorem shows that non-
termination may be caused by the possibility to change a field value of
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the same document or execute the same transaction infinitely many times.
The definition of SetF ieldTrigger and ExecTrans functions in T admits
cyclic references between instructions and transactions. In the following,
we observe that if one forbids cycles then chase termination is guaranteed.

Definition 2 (Dependency Graph). A dependency graph over a document
theory T is a directed graph with the set of vertices V equal to Form
Names × (FieldNames ∪ TransNames ∪ {CreateDoc}) and the set of
edges E defined as follows.

For any (form, name), (form′, name′)∈V , there is an edge from (form,
name) to (form′, name′) if there is [θ, q] in the definition of SetF ieldTrig-
ger or ExecTrans functions in T , in which θ is a (form, name)-condition
and q = conc(queue, instr), for a list queue and queue extension instr,
such that there is a (form′, name′)-instruction in the definition of instr.

Definition 3 (Locally Simple Document Theory). A document theory T
is called locally simple if the dependency graph over T is acyclic.

Theorem 2 (Local Simplicity Implies Termination of Transactions). For
any locally simple document theory T and constant lists model, queue, there
is a terminating chase sequence for 〈 model, queue 〉 wrt T .

Proof Sketch. We show that for any such model and queue, there is a finite
chase sequence s0, . . . , sn, where s0 = 〈 model, queue 〉, n > 1, such that
sn = 〈 model′, tail(queue) 〉, where |model′| = |model| + p, for some
p > 0. This yields that any instruction from queue can be processed in a
finite number of steps, from which the claim follows. �

Although the theorem states that local simplicity guarantees termina-
tion, it does not provide any insight on how difficult it is to compute the
effects of transactions. The next result indicates that the complexity is high,
which is due to the possibility to create exponentially many documents by
using recursive instruction terms. For n > 0, let 1exp(n) be the notation
for 2n and for k > 1, let (k+ 1)exp(n) = 2kexp(n).

Theorem 3 (Computing Effects of Transactions is Hard). For any k > 1,
n > 0, there exists a locally simple document theory T and a constant list
queue, both of sizes linear in k, n, such that the terminating chase sequence
for s0 = 〈 〈 〉, queue 〉 wrt T has the form s0, . . . , sm, where m > kexp(n)
and sm = 〈 model, 〈 〉 〉, for a list model such that |model| > kexp(n).

Finally, let us formulate a sufficient condition, which guarantees poly-
nomial boundedness of effects of transactions. Let G be a dependency
graph over a document theory T and for form ∈ FormNames, name ∈
FieldNames ∪ TransNames ∪ {CreateDoc}, let s be a (form, name)-
instruction in a queue extension from the definition of SetF ieldTrigger
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or ExecTrans functions in T . We call the term s document generat-
ing if either name = CreateDoc or s = Rec[〈 〉, h, DocFilter], where
h = conc(〈 〈 form,CreateDoc 〉 〉, g(α)), or (form, name) has a successor
vertex (form′, name′) in G, which is given by a document generating term.

Theorem 4 (Polynomially Bounded Effects of Transactions). Let T be a
locally simple document theory such that in any queue extension from the
definition of SetF ieldTrigger or ExecTrans functions in T , there are no
document generating Rec-terms.

Then for any constant list model and a list of instructions queue, the ter-
minating chase sequence for s0 = 〈 model, queue 〉 has the form s0, . . . , sn,
where n is exponentially bounded by the size of T ,s0, and sn=〈 model′, 〈 〉 〉,
for a list model′ of size polynomially bounded by the size of T and s0.

Proof Sketch. Let N be the maximal number of instruction terms in a
queue extension from the definition of SetF ieldTrigger or ExecTrans
functions in T . Clearly, N is bounded by the size of T . Let model,
queue be lists, which satisfy the conditions of the lemma, and let k be
the rank of instruction t = head(queue) wrt T , model. By definition, k is
bounded by the number of vertices in the dependency graph over T and
thus, it is bounded by the size of T . We show by induction on k that
there is a chase sequence s0, s1, . . . , sn, such that s0 = 〈 model, queue 〉,
sn = 〈 model′, tail(queue) 〉, |model′| 6 |model| + N , and n 6 (N ·
(|model| + N))k. Then there is a terminating chase sequence s0, . . . , sm
for s0, where sm = 〈 m, 〈 〉 〉, |m| 6 |queue| · (|model| + N), and m 6
|queue| · (N · (|model|+N))k, which proves the theorem. �

5. Conclusions

We have shown that document theories (and thus, the Document Model-
ing approach) implement a Turing-complete computation model even in the
presence of a tractable language of arithmetic operations (over document
field values) and queries (for selecting collections of documents). This
confirms that one of the main sources of the computational complexity
are the definitions of daemons, which specify transactions and relation-
ships between them. If the definitions are given in a way that allows for
executing the same transaction or changing the value of a document field
infinitely many times, then it is possible to implement computations of
any Turing machine. We have shown that disallowing cyclic relationships
between transactions guarantees decidability of transaction termination
(importantly, cycles can be easily detected by a syntactic analysis of ax-
ioms of a document theory), but the complexity of computing effects of
transactions even in this case is high, if creating documents in loops is
possible. In fact, using looping in transactions is natural, since it allows
for performing updates over collections of documents. If documents can be
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only modified in loops, but not created, then the complexity of computing
effects of transactions is decreased and we have noted a case when the
effects are polynomially bounded. In further research, we plan to make a
more detailed complexity analysis for various (practical) restrictions on the
definition of daemons. In this paper, we did not study the contribution
of query languages to the complexity of computing effects of transactions
and we have adopted a relatively simple query language. Since daemons
employ document queries to modify collections of documents, it would be
important to study the interplay between these two sources of complexity.
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Аннотация. Рассматривается парадигма документного моделирования, которая 
дает формальную основу для работы с документами в системах управленческого 
планирования. В данной работе документные модели формулируются в рамках 
логического формализма – языка семантического моделирования – и рассматри-
вается проблема распознавания завершаемости транзакций, заданных документной 
моделью, для любого возможного входа. Показывается, что в общем случае данная 
проблема алгоритмически неразрешима. Формулируются достаточные условия, 
гарантирующие разрешимость и полиномиальную ограниченность результата 
выполнения транзакций.

Ключевые слова: семантическое моделирование, документная модель, тран-
закция, цепь.
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