«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2025. Vol 53

Boundary Value Problem of Magnetically Insulated Diode: Existence of Solutions and Complex Bifurcation

Author(s)

Denis N. Sidorov1, Alexander V. Sinitsyn2, Omar D. Toledo Leguizam´on2 , Liguo Wang3

Melentiev Energy Systems Institute SB RAS, Irkutsk, Russian Federation 

Universidad Nacional de Colombia, Bogot´a, Colombia

Harbin Institute of Technology, Harbin, China 

Abstract

The paper focuses on the stationary self-consistent problem of magnetic insulation for a vacuum diode with space-charge limitation, described by a singularly perturbed Vlasov-Maxwell system of dimension 1.5. The case of insulated diode when the electrons are deflected back towards the cathode at the point 𝑥* is considered. First, the initial VM system is reduced to the nonlinear singular limit system of ODEs for the potentials of electric and magnetic fields. The second step deals with the limit system’s reduction to the new nonlinear singular ODE equation for effective potential 𝜃(𝑥). The existence of non-negative solutions is proved for the last equation on the interval [0, 𝑥* ) where 𝜃(𝑥) > 0. The most interesting and unexplored case takes place if 𝜃(𝑥) < 0 on the interval (𝑥*, 1] and such case corresponds to the case of an insulated diode. For the first time, a numerical analysis of complex bifurcation of solutions in insulated diode is considered for 𝜃(𝑥) < 0 depending on parameters and boundary conditions. Bifurcation diagrams of the dependence of solution 𝜃(𝑥) on a free point (free boundary) 𝑥* were constructed. Insulated diode spacing is found. These results could lead to more efficient and effective magnetically insulated diodes in future power conversion systems.

About the Authors

Denis N. Sidorov, Dr. Sci. (Phys.–Math.), Prof. RAS, Melentiev Energy Systems Institute SB RAS, Irkutsk, 664033, Russian Federation, dsidorov@isem.irk.ru, https://orcid.org/0000-0002-3131-1325 

Alexander V. Sinitsyn, Dr. Sci. (Phys.–Math.), Prof. Universidad Nacional de Colombia, Bogot´a, Colombia, avsinitsyn@unal.edu.co 

Omar D. T. Leguizam´on, PhD student Universidad Nacional de Colombia, Bogot´a, Colombia, otoledo@unal.edu.co 

Liguo Wang, PhD (ElecEng), Prof. Harbin Institute of Technology, Harbin, China, wlg2001@hit.edu.cn

For citation
Sidorov D. N., Sinitsyn A. V., Leguizamon O. D. T., Wang L. Boundary Value Problem of Magnetically Insulated Diode: Existence of Solutions and Complex Bifurcation. The Bulletin of Irkutsk State University. Series Mathematics, 2025, vol. 53, pp. 118–130. https://doi.org/10.26516/1997-7670.2025.53.118
Keywords
relativistic Vlasov-Maxwell system, magnetic insulation, effective potential, insulated diode, initial value problem, singular boundary value problem, contractive mapping, fixed point theorem, complex numerical bifurcation
UDC
517.927.9
MSC
35Q83, 34A12, 34B15, 45B05, 45D05, 47H09, 47H10, 47H11
DOI
https://doi.org/10.26516/1997-7670.2025.53.118
References
  1. Ben Abdallah N., Degond P., Mehats F. Mathematical Models of Magnetic Insulation. Rapport interne N 97.20. 1997, MIP, Universite Paul Sabatier, Toulouse, France. 
  2. Degond P., Raviart P.-A. An asymptotic analysis of the one-dimensional Vlasov Poisson system: the Child-Langmuir law. Asymptotic Anal., 1991, vol. 4, no. 3, pp. 187–214. 
  3. Langmuir I., Compton K.T. Electrical discharges in gases. Part II. Fundamental phenomena in electrical discharges. Rev. Mod. Phys., 1931, vol. 3, no. 2, pp. 191–257. 
  4. Rojas E.M., Sidorov N.A., Sinitsyn A.V. A boundary value problem for non-nsulated magnetic regime in a vacuum diode. Symmetry, 2020, vol. 12, no. 4, 617. 
  5. Sidorov N.A., Sidorov D.N. Small solutions of nonlinear differential equations near branching points. Russ Math., 2011, vol. 55, pp. 43–50. https://doi.org/10.3103/S1066369X11050070
  6. Sidorov N., Sidorov D., Sinitsyn A. Toward General Theory of Differential Operator and Kinetic Models, Book Series: Chua L. (ed.) World Scientific Series on Nonlinear Science Series A, vol. 97, World Scientific, Singapore, London, 2020, 496 p. 
  7. Sidorov D., Rojas E., Sinitsyn A., Sidorov N. Approximation and Regularisation Methods for Operator-Functional Equations / Book Series: Bellomo N., Eftimie R. (eds.) Advances in Mathematics for Applied Sciences, vol. 95, World Scientific, Singapore, London, 2025, 248 p. 
  8. Sinitsyn A.V. Positive solutions of a nonlinear singular boundary value problem of magnetic insulation. Mathematical modelling, 2001, vol. 13, no. 5, pp. 37–52. 
  9. Github Repository (2025). Available at: https://github.com/omardtl24/Mag Isol Numerical (accessed 5 May 2025). 
  10. Wright J. K., Sree Harsha N. R., Garner A. L. A generalized equation for the critical current for a one-dimensional crossed-field gap in an orthogonal coordinate system. arXiv e-prints, 2025, no. 2504.13435. 
  11. Zhang P., Valfells A., Ang L.K., Luginsland J.W., Lau Y.Y. 100 years of the physics ´ of diodes. Applied Physics Reviews, 2017, vol. 4, no. 1, p. 011304. 



Full text (english)