«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2025. Vol 53

𝐺-permutable Subgroups in PSL2(𝑞) and Hereditarily 𝐺-permutable Subgroups in PSU3(𝑞)

Author(s)

Alexey A. Galt1, Valentin N. Tyutyanov2

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russian Federation 

MITSO International University, Gomel, Belarus

Abstract
The concept of 𝑋-permutable subgroup, introduced by A. N. Skiba, generalizes the classical concept of a permutable subgroup. Many classes of finite groups have been characterized in terms of 𝑋-permutable subgroups. In particular, W. Guo, A. N. Skiba and K. P. Shum obtained a characterization of the classes of solvable, supersolvable and nilpotent groups. Nevertheless, the further application of this concept in solving various problems in group theory is restrained by the lack of information about 𝐺-permutable and hereditarily 𝐺-permutable subgroups lying in the composition factors of groups. In this regard, the following problems were posed in the Kourovka Notebook: which finite nonabelian simple groups 𝐺 have a proper 𝐺-permutable subgroup and a proper hereditarily 𝐺-permutable subgroup? In this paper, an answer is obtained to the first question for simple linear groups of dimension two and to the second question for simple unitary groups of dimension three.
About the Authors

Alexey A. Galt, Cand. Sci. (Phys.Math.), Assoc. Prof., Sobolev Institute of Mathematics SB RAS, Novosibirsk, 630090, Russian Federation, galt84@gmail.com

Valentin N. Tyutyanov, Dr. Sci. (Phys.–Math.), Prof., MITSO International University, Gomel, 246029, Belarus, vtutanov@gmail.com

For citation

Galt A. A., Tyutyanov V. N. 𝐺-permutable Subgroups in PSL2(𝑞) and Hereditarily 𝐺-permutable Subgroups in PSU3(𝑞). The Bulletin of Irkutsk State University. Series Mathematics, 2025, vol. 53, pp. 156–164. https://doi.org/10.26516/1997-7670.2025.53.156

Keywords
simple linear group, simple unitary group, 𝐺-permutable subgroup, hereditarily 𝐺-permutable subgroup
UDC
512.542
MSC
20D06
DOI
https://doi.org/10.26516/1997-7670.2025.53.156
References
  1. Bray J.N., Holt D.F., Roney-Dougal C.M. The maximal subgroups of the lowdimensional finite classical groups. Cambridge, Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139192576 
  2. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A. An Atlas of Finite Groups. Oxford University Press, 1985. 
  3. Dickson L.E. Linear groups: With an exposition of the Galois field theory. Dover Publications Inc., New York, 1958. 
  4. Doerk K., Hawkes T. Finite Soluble Groups. Walter de Gruyter, Berlin, New York, 1992. https://doi.org/10.1515/9783110870138
  5. Galt A.A., Tyutyanov V.N. On the existence of 𝐺-permutable subgroups in simple sporadic groups. Sib. Math. J., 2022, vol. 63, no. 4, pp. 691–698. https://doi.org/10.1134/S0037446622040097
  6. Galt A.A., Tyutyanov V.N. On the existence of hereditarily 𝐺-permutable sub-groups in exceptional groups of Lie type. Sib. Math. J., 2023, vol. 64, no. 5, pp. 1110–1116. https://doi.org/10.1134/S003744662305004X
  7. Gorenstein D. Finite groups. New York, Harper and Row, 1968, 527 p. 164 A. A. GALT, V. N. TYUTYANOV 
  8. Guo W., Skiba A.N., Shum K.P. 𝑋-quasinormal subgroups. Sib. Math. J., 2007, vol. 48, no. 4, pp. 593–605. https://doi.org/10.1007/s11202-007-0061-x
  9. Guo W., Skiba A.N., Shum K.P. 𝑋-semipermutable subgroups of finite groups. Journal of Algebra, 2007, vol. 315, pp. 31–41. https://doi.org/10.1016/j.jalgebra.2007.06.002 
  10. Guo W. Structure Theory for Canonical Classes of Finite Groups. Springer, Heidelberg, 2015. https://doi.org/10.1007/978-3-662-45747-4 
  11. Isaacs I.M. Finite group theory. Graduate Studies in Mathematics 92 (American Mathematical Society, Providence, RI), 2008. https://doi.org/10.1090/gsm/092 
  12. Ito N. On the factorizations of the linear fractional groups 𝐿𝐹(2, 𝑝𝑛 ). Acta Scient. Math., 1953, vol. 15, pp. 79–84. 
  13. Ito N., Szep J. Uber die Quasinormalteiler von endlichen Gruppen. Acta Sci. Math., 1962, vol. 23, pp. 168–170. 
  14. Mazurov V.D., Khukhro E.I. The Kourovka Notebook: Unsolved Problems in Group Theory. 20th ed. Novosibirsk, 2022. 
  15. Liebeck M.W., Praeger C.E., Saxl J. The maximal factorizations of the finite simple groups and their automorphism groups. Mem. Am. Math. Soc. 432, 1990, 151 p. 
  16. Ore O. Contributions in the theory of groups of finite order. Duke Math. J., 1939, vol. 5, pp. 431–460. 
  17. Stonehewer S.E. Permutable subgroups of infinite groups. Math. Z., 1972, vol. 125, no. 1, pp. 1–16. 
  18. Tyutyanov V.N., Bychkov P.V. On hereditarily 𝐺-permutable subgroups of sporadic groups. Vestnik Polotsk State Univ., 2008, vol. 3, pp. 23–29. (in Russian) 
  19. Vasil’ev A.F., Tyutyanov V.N. Alternating groups with hereditarily 𝐺-permutable subgroup. Izv. F. Skorina Gomel State Univ., 2012, vol. 5, no. 74, pp. 148–150. (in Russian) 
  20. Yang N., Galt A. On the Existence of 𝐺-Permutable Subgroups in Alternating Groups. Bull. Malays. Math. Sci. Soc., 2023, vol. 46, 177. https://doi.org/10.1007/s40840-023-01569-0

Full text (english)