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Abstract. This work considers two-qubit open quantum systems driven by coherent
and incoherent controls. Incoherent control induces time-dependent decoherence rates
via time-dependent spectral density of the environment which is used as a resource
for controlling the system. The system evolves according to the Gorini-Kossakowski—
Sudarshan—Lindblad master equation with time-dependent coefficients. For two types of
interaction with coherent control, three types of objectives are considered: 1) maximizing
the Hilbert—Schmidt overlap between the final and target density matrices; 2) minimizing
the Hilbert—Schmidt distance between these matrices; 3) steering the overlap to a given
value. For the first problem, we develop the Krotov type methods directly in terms of
density matrices with or without regularization for piecewise continuous controls with
constaints and find the cases where the methods produce (either exactly or with some
precision) zero controls which satisfy the Pontryagin maximum principle and produce
the overlap’s values close to their upper bounds. For the problems 2) and 3), we find
cases when the dual annealing method steers the objectives close to zero and produces a
non-zero control.
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Amnnoranus. PaccMoTpenb! JByXKyOUTHBIE OTKPBITHIE KBAHTOBBIE CHCTEMbI C KOI'€PEHT-
HBIM U HEKOI'€DEHTHBIM YIPABJICHUSMH, TJ[€ BTOPOE UHIYIIUPYET 3A6UCAULUE OM BPEMEHY
ckopocmu, 0exozepenyuy Iepe3 3aBUCIILYI0 OT BPEMEHH CIIEKTPAJIbHYIO [NIOTHOCTD OKPY-
JKEHUsI, UCIIOIb3YEMYIO 37IeCh KaK PECypcC Jjis yIpaBjeHus cucteMoii. Cucrema 5BOJION-
OHUPYET CcOorIacHO Macrep-ypasHenuio ['opunn — Kocakosckoro — Cynapiiana — Jlunno-
JIaZia ¢ 3aBUCSAIIMMHU OT BpeMeHHu Kodddummentamu. s IByX THUIIOB B3aMMOIEHCTBUS
C KOIepEeHTHBIM YIPABJIEHHEM DACCMOTPEHBI TPHM THIA KPUTEPHEB: 1) MaKCHMU3AIWsI
nepekpoiTus ['mabbepra — [lMuara mexay duHATBLHON U 1E/I€BOM MATPHUIAMH ILIOT-
HOCTH; 2) MUHMMH3AIWsT paccTosiaus ['miasbepra — [IIMuara MeXy STHMH MAaTPHIAMUT;
3) cTpemiieHME NEPEKPBITUS K 3aJaHHOMY 3HadeHHo. s 1epBoil 3a/aunM pa3sBHBAEM
MeTonbl Tua KpoTroBa B TEepMUHAX MATPHUIL IUIOTHOCTH C peryjspusanueir u 6e3 st
KYCOYHO-HENPEPBIBHBIX YIIPABJIEHUI C OrPAHUYEHUSIMA U HAXOJUM CJIydau, [Jie METOIbI
naoT (mbo TOIHO, TMGO ¢ HEKOTOPOH TOYHOCTBIO) HYJIEBbIE YIPABJIEHUs, KOTOPBIE yJI0-
BJIETBOPSIIOT IPUHIUILY MakcuMyMa [IoOHTpsruHa 1 aioT 3HAYMEHNs IEPEKPbITH, OJIN3KIe
K BepxHUM rpanumnam. s 3a7aq 2) u 3) HANJIEHBI CITyIan, KOTJIa METOJ, JBOHHOTO OTKHATA,
JeJiaeT KpUTepur OJIU3KUME K HYJIIO U JAaeT HeHYJIeBOe yIIPaBJIEHUE.

Kirouesnle ciioBa: OTKPbITasd KBaHTOBasl CUCTEMa, HEKOI'€PEHTHOE KBaHTOBOE YyIIpaB-
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Dedicated to the 90th anniversary of the birth and to the memory
of Vadim Fedorovich Krotov (1932-2015)

1. Introduction

Optimal control of quantum systems attracts high interest due to vari-
ous applications ranging from quantum computing to laser chemistry [18].
In many situations, controlled quantum systems are open, i.e., interacting
with the environment. While in some situations the environment is treated
as an obstacle, in other cases it can be a useful control resource, as for
example was proposed to do via incoherent control in [30;31], where spec-
tral (generally time-dependent and non-equilibrium) density of incoherent
photons is used as control function jointly with coherent control by lasers
to manipulate the quantum system dynamics.

In the approach of [30], which is used in the present work, the incoherent
control induces time-dependent decoherence rates vy (t) via time-dependent
spectral density of the environment n(t), in addition to coherent control w,
so that density matrix evolves according to the master equation

p(t) = =i[Ho + Hegry, p(8)] + Y w(O)Dr(p(1)), (L.1)

where Hy is the free Hamiltonian, H is the Hamiltonian induced by con-
trol ¢ = (u,n), Dy is a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
dissipator, and [A, B] = AB — BA is the commutator of matrices A and B.
In addition to general consideration, two physical classes of the environment
were exploited — incoherent photons and quantum gas, with two explicit
forms of Dy, derived in the weak coupling limit (WCL) and low density limit,
respectively. In [31], it was shown that for the master equation (1.1) with
Dy, derived in the WCL (describing atom interacting with photons) generic
N-level quantum systems become approximately completely controllable in
the set of density matrices. Following this general approach, various control
problems for one- and two-qubit open systems controlled by simultaneous
coherent and incoherent controls were considered [24;27;33].

Various tools are used in quantum optimal control such as Pontryagin
maximum principle (PMP) [4], Krotov type methods [11; 13; 15; 21; 26;
37], [20, § 6.5]), Hamilton-Jacobi-Bellmann equation [12], Zhu-Rabitz [39]
method, GRadient Ascent Pulse Engineering (GRAPE) [13;17;33], GRAPE
with quasi-Newton optimizers [9], speed gradient method [32], gradient
free Chopped RAndom Basis (CRAB) optimization [8], genetic algorithms
[14;30], machine learning [10]. Riemannian gradient optimization approach
over complex Stiefel manifolds for controlling open quantum systems for
quantum technologies was developed in [29].

Theory of optimal control contains the approach based on deriving spe-
cial nonlocal exact increment formulas and constructing the corresponding
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tools for various problems (e.g., [2;3;5;6;25;35]). For the problems linear in
real-valued states (including bilinear), e.g., the z- and -procedures (v is
co-state) ( [35, Ch. 1], [38, § 5.4], [5, pp. 15-16, 31-32], [3, Sec. 3]) are known,
where the z-procedure is an adaptation of the general Krotov method (see
about this method, e.g., [19], [20, Ch. 6]) without regularization, while the
1-procedure is symmetrical one.

This article considers two-qubit (N = 4) open quantum systems evolv-
ing according to the GKSL master equation with simultaneous coherent
and incoherent controls, with two types of interaction with coherent con-
trol. Sec. 2 considers three types of objectives: 1) maximizing the overlap
(p(T), prarget); 2) minimizing ||p(T') — prarget||; 3) steering the overlap to a
given M € (0,1), i.e. minimizing [(p(T'), ptarget) — M |. In Sec. 3, we develop
for the problem 1) the Krotov type methods in terms of density matrices
with or without regularization for piecewise continuous controls with con-
straints and find the cases where the methods produce (either exactly or
with some precision) zero controls which satisfy the PMP and produce
overlap’s values which, for sufficiently large T', are close to m;;ix(p, ptarget>.

In Sec. 4, for the problems 2) and 3), we use a parameterized class of
controls and find cases when the dual annealing method steers objectives
close to zero and produces non-zero control. Sec. 5 resumes the article.

2. Two-Qubit System and Objective Functionals

For two qubits, the Hilbert space is H = C2®C?. Consider the following
GKSL master equation with coherent and incoherent controls:

p(t) =—i [HO + Hc(t)ap(t)] + Eﬁﬁt)(/)(t))a ,0(0) =po, te [OvT]7 (21)

where p(t) : H — H is density matrix (positive semi-definite, p(t) > 0,
with unit trace, Trp(t) = 1); the parameter £ > 0 describes strength of
the coupling between the system and its environment; the Hamiltonian
H_.4y = €Hegr () + Huy(r), where scalar coherent control w and incoherent
control n = (ny,ny) are considered as piecewise continuous on [0, 7], control
¢ = (u,n); effective Hamiltonian Heg ,, ;) depends on n(t) and describes the
Lamb shift, Hamiltonian H, ) describes interaction with u(t), En( t)( p(t)) is
the controlled superoperator of dissipation, pg is the initial density matrix.
The system of units is such that the Planck’s constant A = 1. Consider

ws
Hy:= Hy +H0 2, Hoy:= JWJ‘, Wyi=o,®l, Wyi=lh®o,,

Heg n(t) = Z eff,n;(t)> Heg mi(t) = Ajnj(t)Wja Hu(t) = V’LL(t),

Ussectust IpkyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2023. T. 45. C. 3-23
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V=V=0:1®+1b®Q2 or V="V:=0Q&®Qs,
Qj = Za_x - )\iaa = sin f; cos p; 0, + sinf; sin pjo, + cos b0,

where j = 1,2, the parameters wj, A; > 0, MV = ()\%,/\{,,)\g) €cR}isa
. . 01 0 —i 10 .
given unit vector, o, = (1 O>’ Oy = <2 0 >, and o, = <O _1> are Pauli
matrices. The work [28] considers the case Q1 = Q2 = 0, or, equivalently,
§; = /2 and p; = 0.
The superoperator of dissipation acts on p(t) as

L2 (e(0) =3~ [0 (ni(0) + 1) (207 o) = {07 0(0)})
+ Qn;(t) (20';_p(t)0'j_ — {aj_aj, p(t)} )},

where the parameters Q; > 0, j = 1,2; {A, B} = AB + BA denotes anti-
commutator of matrices A and B. The matrices 05 = 0= ®ly, 05 = la@o™*

are obtained with o = <(1) 8), o = <8 é) , |2 is the 2x 2 identity matrix.
Set the following constraints including the required n;(t) > 0:
lw(t)| < p, 0<ni(t) <nmax, J=1,2, p, nmax >0, t €[0,7].(2.2)

For the system (2.1), consider the control objectives

Jl (C) = <p(T)a ptarget> = Tr(p(T)ptarget) — sup (ﬁxed T> O) (2 3)
Ja(e,T) :==T + P||p(T) — prarget|| — inf, (2.4)
J3(e,T) :=T + Pl{p(T), ptarget) — M| — inf, M € (0,1), (2.5)

where the Hilbert-Schmidt distance is ||p — o = [Tr ((p — 0)2)]1/2 p(T)

is the final state for given controls u,n; P > 0 is some penalty coefficient.
For (2.4) and (2.5), consider the following parameterized class of controls
(inspired by CRAB [8] and (12) from [16]):

ult) = exp (~hu (= T/2)°) 30 (Axsin(ut) + By cos(t) , (26)

ni(t) = Cyexp (~ha, (=T/27),  j=12, (2.7)
where K and vy, ...,vk are given. The parameters hy, hy,, hn,, A1,. ..,
Ak, Bi1,...,Bg, and C1, Csy are bounded from above and below, where the

zero lower bound for Cj is required and other bounds are arbitrary.
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3. Krotov Type Methods for Maximizing the Overlap

For (2.3), introduce the auxiliary objective
a .
I%(c; ™)) = I(c) + olle—s Mo = inf,  I(e) :==b—Ji(c), (3.1)

where b € {max(p,ptarget) 1}, @« > 0, @ € {0,1} turns off and on the
regularization; c(k) (u®), ngk), ng )) is a given control, s € {0, 1} switches
between the two regularization’s types. The works [21], [20, § 6.5] for the
Schrédinger equation consider both presence and absence of regularization
(with s = 0 in our terms). The case s = 0 also reminds [37], where the
Schrodinger equation is considered. The case s = 1 reminds the regu-
larization in [35, p. 61] leading to the projection improvement procedures
under constrained control; also this case reminds the regularized Krotov
type methods used in [11;13] for various quantum problems.

3.1. PONTRYAGIN FUuNCTION AND KROTOV LAGRANGIAN

For (3.1), the corresponding Pontryagin function is

. a
ha(t7Xa 2 C) = <X7 _,L[HC7IO] + Eﬁr?(p)> - %HC - SC(k)(t)”% -

~

c « 7
= (K(x,p),c) — %HC — sc™()[13 + h(x, p),

where y and p are 4 x 4 density matrices; ¢ = (u,n1,n2) € R3; the function
K¢ = (K%, K", K"?) consists of K"(x, p) = (x, —i[V, p]) and

K" (x,p) = <X7 —i[A;Wj, p] + €9y (20;,0%+ + 20]pr0; - {I4,p})>

(the 4 x 4 identity matrix l4 appears in K™ since 0 S +o; ;r = ly),
j =1,2; the term

h(x,p) = <X7 —i[Hg, p] +€Z 20 pa {0 o; ,p})>

The Krotov Lagrangian for our problem is

T
I(e.p) = Glo(T) = [ Bt ple). o).
G(p(T)) = b= (p(T), prasger) + (X(T), p(T)) — (x(0), po),

a
Rt p,c) = (x(£), =ilHe, p] +£L7(p)) + (k(2), p) = 5—llc = s P (D)3

Ussectust IpkyTCKOro rocylapCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2023. T. 45. C. 3-23
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The function x is defined in Sec. 3.3. Note that fOT R*(t, p(t), c(t))dt is

(07

T rd a F ()12 ) gt = T
[ (5000000 = Lt = se 018 e = o) )1 -

~

«
= glle = se™ a0 1 = G(p(T) = b+ (p(T), prarger) -

~ ~

Q o a
- %HC - Sc(k)H%?[O,T]vL (¢;p) = b—(p(T), prarget) + %HC - Sc(k)”%qo,ﬂ-

3.2. INCREMENT FORMULAS

Consider increment of L at (admissible) controls ¢, ¢(*):

T
19(c, p) — L9(e®, p¥) = G(p(T)) - G(PP(T)) - /0 (R (¢, p(t), c(t)) —
RO () (8), W) (1)), (3.2)

where the process (), p(*¥)) is either given or obtained at the previous
iteration. Following the idea of [19], set the conditions

G(p(T)) < G(PM(T)) and  R(t, p(t), c(t)) = R(t, p™ (1), M (1))
to make L%(c, p) < L*(c®), p¥)). To satisfy the inequality condition for G,
we simply take G(p(T)) = G(p™*)(T)) that gives

G(p(T)) = G(p™(T)) = (X(T) = praxget, p(T) = p™(T)) = 0
and, as the result, implies the transversality condition x(T') = prarget-
We can represent the integrand in (3.2) as A; R* + Ag R, where

AR = R*(t,p(t). c(t) — R(t, p(t), M) (1)),
DR = R(t,p(t), (1)) — R (¢, o (1), M) (2)).
Here A1R* and AR are constructed similarly to [19], [20, p. 243]. Then
AsR = (x(t), =i[Hom ), p(t) — ™ (1)) +€( n(k)(t( p(t))
LD (PO + (D), p(8) — #PE)) = (plt) — oD 1),
— [H 0y, ()] X0) + =(x(8), Enw)(t) (olt)) - znw (PP (1)),

where the anticommutativity property of commutator and cyclic permuta-
tion of matrices under trace are used. To satisfy the condition AR > 0,
let Ao R = 0. Transform the last term in Ay R, which is

(0.3 (M@ + Vo 0] {oF o7, pt)) + n(0)x
x 20 p(ta — oot o)) = (%P (1) + 1) 20 p P (1) -
—{of o7, oMt} + P W20t o P (a7 — {o7or, D 0h)])
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to E<£ <k>(t x(®)), p(t) — p® (1)) with
Lol

2l 00) =320 [0 () + 1) (
) ot — {0} )}
here “” reflects that (x (), T1(p(t)) = T1(p™ (£))) = (T} (x (1)), p(t) — p®) (1))

(
and (x(t), Ta(p(t)) — T2(P(k)( ))> = (T} (x(1)), p(t) — p®(1)), where the op-

Pl
erators Ty := 207 - ] , Ty = 20 -0 and (U;F)T o;, (o; )= a;“, note

that cr;-ra;, a;a;“ are Hermitian. See also [11]. The condition AsR = 0
leads to the adjoint system

KW (t) = =ilHeu 0 X (0] = L) (), XPT) = prasger (33)
The system is solved backward in time. Further, we see that

AR = h* (6, x M (8), p(1), e(t) — B (8, X (2), p(t), P (1)) = (KK (M (1),

p(0), e(t) ~ 1) — 2 eft) — seP DI+ - (1) — 5 1)

The first increment formula (for 7¢) is

T
(e ) = 1) = = [ (GO0 p0),ctt) = 9 1) -

a

~ T
gl = seP )t = 5 [0 — s 0lBar. (3.4

Important that this exact and nonlocal formula does not contain any resid-
ual. If @ = 0, then I%(c; ¢®)) = I(c) and h(x, p, ¢) := h®(t, X, p, c).

Further, for deriving the second increment formula, we represent the
integrand in (3.2) as the sum AR + Ay4R®, where

AsR = R(t,p(t), c(t)) — R(t, o™ () c(t)) =
= (ilH. c(t ) X(B)] 4 X(1) + 2L, (), p(t) = p®) (1)),
AR = R(t,pM(1), (1)) — R(t, p* )( t),cM(1) =
( )

= h(x(0), pP (1), e()) — hx(0), 8¥) (1), ¥ (1)) =
= (R (0), PP (D), elt) — D) + o elt) — s (1)
For AsR = 0 we obtain
() = —ilHoy x(0)] = L2 (0). X(T) = prarger- (3.5)

Ussectust IpkyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2023. T. 45. C. 3-23
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The second increment formula (for %) is

T
(e e®) = 1) = = [ (R ()0 0)ctt) = 1) -

~

(67

-~ T
@ O VPNTPASEECS k) (1) _ or(B) (41112
2Oéllc(t) sc (t)llg)dt 5 /0 ¢ (t) — sc\™(t)|2dt.  (3.6)

3.3. WITHOUT REGULARIZATION: p- AND X-METHODS

Here based on (3.4) for & = 0, we construct the p-method. To obtain
a control ¢ such that I(c) — I(c®)) < 0 and using (3.4) for @ = 0, set the
condition (K¢(x®)(t), p(t)), c(t)—c®)(t)) > 0, t € [0,T], for implementation
of which we introduce the following mappings:

u*(p,t) = arg max(K"(xM(1), p)u) =

lul<p
—p, K (x®(t), p) <0,
= Qi K (x®(t), p) > 0, (3.7)
Using € [—p, 1), KU(xW(t),p) =0,
ni(p,t) = arg max (K™ (x*(t), p)n;) =
15 €[0,Mmax])
0, K (xB(t), p) < 0,
= < Nmax, K (x®)(t), p) > 0, j=1,2. (3.8)
Njsing € [07 nmaxL K (X(k) (t)’ P) =0,

(u*(pst),n*(p, 1))

Define n*(p,t) := (n}(p,t),n =
1) is solved with u*(p(t),t) and n*(p(t),t):

5(
As the result, the system (
p(t) = =i[Hee (pe),0), P(E)] + €L iy 0 (p(1)), p(0) = po. (3.9)

The r.h.s. in (3.9) is, in general, discontinuous in p and ¢. As known
from the z- and vy-procedures’s theory, solution of such a system can be
non-unique. The works [36, Sec. 2], [22, Sec. 6], [23, App. 2] for the problems
with scalar control and real-valued states explain, for the situation when
the switching function becomes zero, how to construct control via differen-
tiation of the equality of switching function to zero. Our case may include
K (x® (1), p(t)) = 0, K™ (xW)(t),p(t)) = 0, and K"2(x*) (1), p(t)) = 0
whose differentiation gives the complicated expressions.

Define the sets ©% := {t € [0, 7] : u*+D(t) #£ u®) (1)},

0, )) and c*(p,t) :
2.

oy = {te0,7]: " "Vt) £ P 1)},
0y, = {te[0,7]: K*(x® (), )*V(8)) # 0},
0y, == {t[0,T]: K™ (x® (1), V(1)) £ 0}, j=1,2.
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Algorithm of the p-method (no regularization). k-th (kK > 0)

iteration (p-procedure) consists of the following steps.

1) If k = 0, then obtain p(® from (2.1) and compute I(c(?); if k >0
then for the known ¢(®) solve the adjoint system (3.3) to obtain x*).

2) Form the mappings (3.7), (3.8).

3) Solve the system (3.9) and construct the set of pairs {(¢, p)}, where
each pair consists of a solution p of (3.9) and ¢(t) = ¢*(p(t),1).

4) Select the pair (1), pk+1)) which provides maximal decrease of
I(c); if there is no decrease then select any (¢ p(k+1)),

5) If the stopping criterion |I(c*+1))—TI(c®)| < € < 1 is not satisfied,
then set k := k + 1 and go to step 1); otherwise stop.

Algorithm of the y-method (no regularization). k-th (k > 0)
iteration (y-procedure) consists of the following steps.

1) If k = 0, then obtain p(®) from (2.1) and compute I(c(?).

2) Form the mappings (3.10), (3.11).

3) Solve the system (3.12) and construct the set {(c, x)}, where, for
each solution x of (3.12), the corresponding control is c¢(t) = ¢*(x(¢),1);
construct the set of the corresponding pairs {(¢, p)} by solving (2.1).

4) Select the pair (1), pk+1)) which provides maximal decrease of
I(c); if there is no decrease then select any (¢, plk+1)),

5) If the stopping criterion |I(c*+1))—TI(c®)| < € < 1 is not satisfied,
then set k := k + 1 and go to the step 2); otherwise stop.

Proposition 1. The p-procedure provides a resulting control ¢t such
that the first integrand in (3.4) for @ = 0, c(t) = cF+D (1), p(t) = pE+t (1),
t € [0,T] is non-negative and I(c*+D) < I(c®)). The strong inequality
I(c* D) < I(c®)) holds when at least one of the three sets ©% N 03,

0," N @2][), j = 1,2 has non-zero measure.

Further, based on the second increment formula (3.6) for a = 0, the
x-method is formulated. Introduce the mappings
wt(x,t) = arglm‘zix(lC“(X, pF) (#))w), (3.10)
ul<p
n;(x,t) = arg max (K"j(x,p(k)(t))nj), ji=1,2. (3.11)

lee[oynmax}

Form n*(x,t) := (ni(x,t), n3(x,t)) and c*(x,t) = (u*(x,t),n*(x,1)).
Introduce the system (3.5) with u*(x(t),¢) and n*(x(t),t):
X(t) =—1 [Hc*(x(t),t%X(tﬂ - Eﬁf*’gx(t%t)()((t))a X(T) = Ptarget- (3~12)
Introduce the sets ©4, = {t € [0,T7] : K (x B0 (), p*) () # 0} and
0y = {t € [0,T]: £ (x¥H1 (1), pM(1)) # 0}, j = 1,2.
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Proposition 2. The x-procedure provides a resulting control ¢**1) such
that the first integrand in (3.6) for @ = 0, c(t) = cFTD (1), x(t) = x**+D (1),
t € [0,7) is non-negative and I(c*t1)) < I(c®)). The strong inequality
I(c DY < I(c®) holds when at least one of the three sets ©% N 05,

©," N Oy, j =1,2 has non-zero measure.

3.4. REGULARIZED p- & x-METHODS. GRADIENT PROJECTION METHOD

Based on the increment formulas (3.4) and (3.6) for @ = 1, we briefly de-
scribe the corresponding regularized p- and y-methods, which are called as
p-method-reg(s, a) and y-method-reg(s, «). In view of [35, p. 61] and (3.4),
we construct the following mappings by deriving the stationary points of
the corresponding quadratic concave functions under (2.2):

1
@ _ w (. (k) T o (R) 2) _
u(p,t) = argmax (K" (CW(0), p)u — 5w~ sul? ()?)
— i, ust(p,t) < —p,
= W ust(p, t) > p,

uSt(p7t)7 |uSt(p7t)’ < M,
where ug(p, t) = su®(t) + ak*(x* (1), p),
. 1
ni(p,t) = arg max (K" (D), phny — 5—(n; — 50l (1)) =

15 €[0,max] 20
0, Nt (P, 1) <0,
= 4 Nmax; Nt (05 1) > Nimax,
nst,j(ﬂ, t), nst,j(pat) € [0, nmax],
where ng j(p,t) = sng.k) (t) + aK"™ (x®) (), p).

Consider ¢*(p,t) = (c*(p,t),n(p,t),j = 1,2) and substitute it into (3.9)
instead of the mapping ¢*. Note that the r.h.s. of this system is continuous
in p by construction. This gives the p-method-reg(s, a).

Consider p-method-reg(s, «) in the following projection form:

(1) = e (p* D (8),1) = Pro (se® (1) + ak* () (1), p*+1 (1)) (3.13)

where Q = [—p, 1] X [0, max]? and Prg is the orthogonal projection (in
|| ||2) which maps any point outside of @) to a closest point in @, and leaves
unchanged points in Q. The function p**1) is the unique solution of (2.1),
where ¢ is taken instead of c.

Consider the function f(u) := K*(u — sul®)(t)) — 2 (u — sul®)(£))2. Its
value at the stationary point is f(us) = $(K*)* > 0. We analyze the
cases usy > p and ug, < —p using zeros ug; = su)(t) € [—u, p] and
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ug2 = sulP) (t) + 20k of f(u). Omitting the details, the result is f(u) > 0
for ugy > p and f(—p) > 0 for ugy < —p. Similarly for ng ;, j = 1,2. Thus,
the increment (3.4) is < 0 for ¢*. Further, comparing (3.1) with (3.4) and
using the basic property (y—Prx(y), Prx(y)—z) > 0 of projection Vy € R™,
Vx € X C R", we obtain the following upper estimate (similar to (2.3) in [2])
for k-th iteration of p-method-reg(s, a) (regularized p-procedure):

T(e®+D) = 1(c®)y = — /TUCC(X(k) (), p(t)), FFD () — s¢®) (1))dt =
0

- / T (B (1) = e (1), D 2) — se® (1)) +

& Jo
+ (s (t) + ak (B (1)) — *D ), ETD (1) — se®) (1)) | dt <
T
= -2 / 1BV (@) — se® (8)]3dt, a >0, F(E) = (e (8),1).
& Jo

Taking into account the increment formula (3.6), we similarly construct
x-method-reg(s, a), where we consider the mapping

(1) = (06 t),nf (. 1),5 = 1,2),
substitute it into (3.12) instead of c¢*.

Proposition 3. FEach of the reqularized p- and x- procedures for any
a > 0 gives such cFtD(t) = (p*tD(t),t) that I(c*F+tD)) < I(cW),
and if R V() # R (t) at a subset with non-zero measure on [0,T] then
I(cFDY < 1(cR).

By analogy with [20, p. 239-240], for the increment (3.2) after differen-
tiating the functions G, R one can obtain the gradient

grad I(c®) (1) = —Kc(x® (1), p® (1)), te0,T). (3.14)

The same system (3.3) as in p-method-reg(s, «) is used. For s = 1, the for-
mula (3.13) reminds the following iterative formula of the one-step gradient
projection method (GPM-1) based on (3.14) (see also [35, p. 59)):

c(k+1)(t) = Prg (C(k) (t) + a(k)ICC(X(k) (t),&)% te[0,T], (3.15)

where a can be not only fixed but also chosen as dependent on k. The dif-
ference between (3.13) and (3.15) is that GPM-1 uses only the background,
ie. (c®), p®) () while p-method-reg(s, o) uses both the background and
the constructed control via c®.

Consider the following functional to be minimized:

1%(c) = 1—J1(0>+/OT<ﬁ1u2(t>+Bz(n1(t)+nz(t)))dt, B1, Ba > 0.

Ussectust IpKyTCKOro rocyIapCTBEHHOTO YHUBEPCUTETA.
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Its gradient is
grad I7(c®)(t) = (= KM (1), M (1)) + 281uP (1),
— K @), oM () + By j=1,2).  (3.16)
Using [1], [28, Sec. 5], we will consider in Subsec. 3.6 GPM-2 in the form

FD (1) = Pro[e®(t) — aWgrad 19(c™) (t)+
+0® (B (@) — ED@)], tefo,T], 6% e (0,1). (3.17)

3.5. PMP. ZERO CONTROLS

By analogy with [7, Ch. 4], — where, for the problem of maximizing
the same overlap with respect to the von Neumann equation with coherent
control, the corresponding formulation of the PMP in terms of density
matrices was done, — we, for our optimal control problem with (2.3) and
a fixed final time T, formulate the corresponding PMP.

Proposition 4. (PMP). For the system (2.1), where coherent and inco-
herent controls are in the class of piecewise continuous controls satisfying
the constraints (2.2) for a fixed final time T > 0, if some admissible
control ¢ = (u,ny,ng) is a strict local mazximum point of Jyi(c) in the
problem of maximizing Jy, then there exist solutions p and X of the sys-
tems (2.1), (3.3), where ¢ = (u,ni,n2), such that the pointwise condi-
tion max h(R(0),7(t),©) = h((t),p(t),&(0)) ¢ € 0.T] holds, where Q =
C

[_Mnu] X [Oanmax]Z- One has

max (K(X(£), (t))u) = K*(R(0) p(0)(0). ¢ € 0.7 (3.18)

[ul<p

max (K™ (X(t), p(t))n;) = K™ (x(£), p(t))n;(t), ¢ € [0,T]. (3.19)

15 €[0,nmax]

Consider py = diag(a1, a2, a3, as) and prarger = diag(bi, bz, b3, bs) with
aj, bj > 0 (j = 1,2,3,4), Yi_ja; = 1, and Y;_,b; = 1. One has
Ji(e) = 2?21 djpj;(T). As in [28], we parameterize p (using z; € R,
Jj = 1,16 for p;;, 7 = 1,2,3,4 and Rep;;, Imp;; with i < j, i, =1,2,3,4)
and x (using y; € R, j = 1,16) and obtain bilinear systems in terms
of z,y which correspond to (2.1) and (3.3). In these terms, K"(x,p) =
(x, —i[V, p]) is realificated as K"(y, z) (via Wolfram Mathematica), but the
derived form is too complicated to present it here. For these py and prarget,
for the realifications of (2.1) and (3.3) with ¢ = ¢ = 0 the corresponding
exact analytical solutions are obtained (via Wolfram Mathematica) for any
V including Vi, Vo with any Q1, Q2 (since H,) = Vu(t) becomes zero
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for any t): Z;,y; have certain non-trivial forms if i € {1,8,13,16}, and
T, =79, =0ifi € 1,16 \ {1,8,13,16}. K“(y,x) is a linear combination
of terms x;y; with 4,5 = 1,16, ¢ # j such that if i € {1,8,13,16} then
j € {1,8,13,16}. Thus, substituting 7;(t), 7;(t) instead of z;,y; in K*(y, =)
gives K"(y(t),z(t)) = 0 at the whole [0,T] for any admissible values of the
system’s parameters. The condition (3.18) is satisfied. We set py = %4,
Prarget = diag(1,0,0,0) and obtain

/Cm (g(t), (t)) — _6728(914’92)’11 (€2€Q1t _ 1) (262€QQT _ 1) 591 S 07
Kcn2 (@(t),f(t)) _ _6725(91+Q2)T (6259215 _ 1) (262€Q1T _ 1) £0y <0,

8

where £,0Q1,Q2 > 0. Using (2.2), we obtain that (3.19) is satisfied for
j =1,2. Thus, ¢ = ¢ = 0 satisfies the PMP for any admissible values of
the system’s parameters and T'. Similar result was obtained in [28].

3.6. NUMERICAL RESULTS

The Python programs for numerical simulations were written by the first
author using such tools as solve_ivp from SciPy, etc. We consider (2.1)
with V=V, e =01, w1 =1, wy=Q; =A; =05 (j =1,2), po = 1la. Set
1 = 50, nmax = 10. Controls are interpolated as piecewise constant with
10* subintervals.

Case 1. Set prarget = diag(1,0,0,0) (pure quantum state), 7' = 100 and
V =Vy with 0, = 7/3, 62 = w/4, p1 = /4, 2 = w/3. Analytically solving
(2.1) with ¢ = 0, we have b — J; ~ 4.54 - 107° for any V, where b = 1 is
the overlap’s upper bound obtained [28] from (p, ptarget) — max and is the
largest eigenvalue of piarget. This gives a test optimal control problem.

Set the two initial guesses: 1) ¢(®) = (u(o),ngo),ngo)) = (4, Nmax, Mmax)
being the furthest from ¢ = 0 and giving I(c(?) ~ 0.74; 2) (¥ = (0,0,1)
being not so far from ¢ = 0 and giving I(c(?)) ~ 0.33.

Set ¢(® = (50, 10,10). For the functional I?, we use GPM-1, GPM-2
(3.17) with the gradient (3.16) (here is adapted for I”). Take 51 = 0.01,
B2 = 0.1. Fig. 1(a—d) show the following features of GPM and the dynamic
control landscape of I(c):

1) we observe that up to about 80th iterations of GPM-1, I(c¥)) varies
from 0.734 to 0.689 and hence changes relatively slowly (the dashed line in
Fig. (a)) and the L% norms of K% (x*), p®)), K" (x(®), p®)) (j = 1,2) are
relatively small (Fig. (d)), but the L?>-norms of u(®), ng-k) (j =1,2) change
significantly (Fig. (b));

2) after about 80th iterations of GPM-1 and up to I(c18V)) ~ 0.2, the
switching functions’ L?-norms become larger and I decreases significantly;

3) after I(c™Y) ~ 0.2, GPM-1 becomes drastically worse (Fig. (a,d))

— now a'®) =1 is inappropriate and GPM-1 is stopped when k = 250;
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Figure 1. For Case 1. Subplots (a)—(d) show behavior vs iteration number & for
¢ = (50,10,10) for GPM-1 and GPM-2 of: (a) objective values; (b) L? norms
of controls; ( ) and (d) L? norms of switching functions; (g) shows numbers of

the Cauchy problems solved in p-method-reg(s = 0, «), x-method-reg(s =0, «)

for reaching I < 5 x 10~ with the different fixed . Subplot (h) for
0 = (0,0, 1) shows numbers the Cauchy problems solved in GPM-1,
p-method-reg(s = 1, ), and y-method-reg(s = 1, «) for reaching I < 5 x 107°,
where « is either 10* or 10° and is the same durlng a run. Subplots (e) and (f )
show for both ¢ p; ;(t) (j =T1,4), 1 — (p(t), prarget), S(p(t)), and P(p(t)) at the
numerically optimized c.

4) GPM-2 (initially o = 1, %) = 0.7, but ¥ = 0.5, ) = 0.85, if
I <0.1, and a® = 0.3, 8%) = 0.9, if I < 0.05) provides ¢ = 0 with good
precision and the stopping condition I < 5- 1075 (see the solid graph in
Fig. (a)) at the cost of 523 Cauchy problems;

5) ¢ = 0 satisfying the PMP is not a stationary point of I(c) — in this
case, Fig. (c) shows that ||K"|| 2 becomes zero while ||K"™ || ;2 and [[K"2]| 2
do not.

Fig. 1(f) shows the von Neumann entropy S(p(t)) = —Tr(p(t)) log(p(t))
and purity P(p(t)) = Trp?(t) vs t at the whole [0,7]. Purification of
quantum states leads to P(p(T")) ~ 1, S(p(T")) ~ 0, when T" = 100, ¢ = 0.

For the same ¢, Fig. 1(g) compares the numbers of the Cauchy prob-
lems for reaching I <5 x 1075 when we use p-method-reg(s = 0, a(k)) and
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x-method-reg(s = 0, a*)) where o € {0.01,0.05,0.1,0.5,1,2,6} is the same
during a run. Both methods work sufficiently good, but the y-method is
faster than the p-method for the 2nd — 7th variants of «.

In contrast to ¢(®) = (14, Nmax, Mmax) = (50, 10, 10), consider 0 = (0,0,1),
because it is interesting to analyze how the methods work starting in some
proximity to ¢ = 0. At the cost of solving only 3 Cauchy problems, p-
method-reg(s = 0, = 1) provides the zero controls and I <5 x 107°. The
resulting K¥(y© (t), 2D (1)) = 0, £ (yO(t),2M(¢)) <0, j = 1,2 at [0, T7].
Also at the same cost, the problem is solved via y-method-reg(s = 0, = 1).
Further, 1000 iterations as of p-method-reg(s = 1,a = 1) and of GPM-1
with the unchanged o = 1 gives only I ~ 0.013.

Each of p-method-reg(s = 1,a), y-method-reg(s = 1,«), and GPM-
1, where « is either 10* or 10° and is the same during a run, provides
I < 5x107°. Fig. 1(h) compares how many the Cauchy problems are
solved in each run of these methods with the two variants for fixing «. The
regularized y-method is essentially faster here.

Consider the p-method without regularization. Knowing that ¢ = 0
satisfies the PMP, we at the first iteration, — instead of differentiating the
switching functions for deriving uging, etc., — try tsing = 01in (3.7), 1 ging =
0 in (3.8) and obtain that K%(y© (¢),z™M(¢)) = 0, K" (3O (¢), 2V (¢)) < 0,
t € [0,7], j = 1,2 and the condition given by Proposition 1 for I(c(V)) <
I(c9)) is realized.

Case 2. Set I(c) = b — Ji(c), prarget = diag(0.7,0.1,0.1,0.1), and
T = 70, where b = 0.7 is the overlap’s upper bound obtained [28] as
the largest eigenvalue of the piarget. If ¢ = 0, then I ~ 547 - 1074
for any V. Uniformly distributing {\,}2°_; on the unit sphere [34] for
A= A2 the corresponding set of @1, Qo is obtained. For these 50
problems, use p-method-reg(s = 0, = 1), ¢/ = (0.1,1,1). The condition
I < &gt0p = 5.6- 10~ is reached for each problem, but numbers of the solved
Cauchy problems vary from 3 to 23.

4. Steering States and the Overlap: Numerical Results

Consider the system (2.1) and Jo, J3 to be minimized (see (2.4), (2.5)).
Using the parameterized class of controls (2.6), (2.7) leads to the prob-
lems of minimizing the corresponding objective functions of 7" and a =
(hu,A1,...,Ax,B1,...,Bg,C1,C2,hy,, hy,).  SciPy implementation of
the dual annealing method (DAM) is used. DAM realizes some zeroth-order
and stochastic approach for finite-dimensional global optimization. DAM
starts from some automatically generated point. In view of the stochastic
nature of DAM, we perform more than one trial for each problem.

Case 1. Consider the problem of minimizing Ja(c,T'). Set V = Vi,
where 0; = 0y = 7/2, ¢1 = @2 = 0 (as considered in [28]). Also set
po = diag(1,0,0,0) corresponding to z¢g = (1, fifteen zeros) which is, as it
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was shown in [28], singular, equilibrium state for the system #(t) = Ax(t),
i.e. for any T the system’s trajectory cannot leave xg without controls. Set
Prarget = diag(0.1,0.1,0.3,0.5). For (2.6), (2.7), consider K = 3, v = 0.5,
vy =1, v3 = 2, hy € [0,2], |[4;] < 10, |B;| < 10 (j = 1,2,3), C; € [0,5]
(G = 1,2), hn, € 0,2 (j = 1,2), T € [0.5,2]. After 10 trials of DAM
applied to (2.4) with P = 103, we stop with |[p(T) — prarget| ~ 0.03 and
see that, at each of these trials, the computed controls u, ni, no are not
trivial. These 10 trials give such ny, ns that the computed values of C' in
(2.7) are from =~ 0.08 to ~ 2.09 and C5 in (2.7) are from =~ 3.57 to 5 under
the constraints C; € [0,5], j = 1,2. Fig. 2 visualizes the result of some
trial, where the initial distance ||p(T") — prarget || = 0.57, the largest occurred
value is near 1. The resulting value ||p(T") — prarget || = 0.03 is much closer
to zero. Thus, using the class of controls (2.6), (2.7) and DAM is helpful.

(2) (b)

05 subsequence with 1.0
) monotonically 0.8

0.4 decreasing distances )
03 0.6
02 0.4
0.1 0:2
0.0

0 100 jdex 300 400

Figure 2. Steering states to prarget = diag(0.1,0.1,0.3,0.5) with V = V4. 10 trials
of DAM give non-trivial u,n1,n2. From a trial with |[p(T) — prarget| == 0.03:
(a) subsequence with monotonically decreasing values of ||p(T) — prarget| during
the work of DAM; (b) the resulting p;,; and ||p(t) — prarget|| Vs t.

For V' = V5 with the same other settings, the best result from 10 trials
of DAM also is ||p(T') — prarget|| = 0.03, and there are such the trials with
|p(T') — prarget|| = 0.03 that either n; is zero or not with non-trivial ns.

Case 2. Consider the problem of minimizing Js3(c,T). Set V = Vi,
where 01 = 6, = /2, p1 = po = 0. For the same other settings, after 10
trials of DAM, the best result for [(p(T'), prarget) — M| is zero. All these 10
trials give that no is zero with various precision.

5. Conclusions

This article considers two-qubit open quantum systems driven by co-
herent and incoherent controls, where the latter uses the environment as a
resource and induces time-dependent decoherence rates so that the system
evolves according to a GKSL master equation with time-dependent coeffi-
cients. For two types of interaction with coherent control, three types of
objectives are considered: maximizing the overlap (p(T), prarget), minimiz-
ing ||p(T") — prarget ||, and steering the overlap to a given value. For the first
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case we, based on [20;35], etc., formulate in terms of density matrices the
Krotov type methods based on the nonlocal exact increment formulas with
or without regularization for piecewise continuous constrained controls, and
also give PMP and GPM, find the cases where the methods produce (either
exactly or with some precision) zero controls which satisfy the PMP and
produce objectives close to m;lx(p, Prarget) SO that the system’s free evolu-

tion itself achieves the goal. The Propositions 1-3 state that the Krotov
type procedures do not produce worse controls, and provide conditions
when the procedures give better controls. For the other problems, we use
a parameterized class of controls and find cases when the dual annealing
method steers objectives close to zero and produces non-zero control.

Comparing with the results beyond quantum control which are the basis
for us (e.g., [20;35;38]), we develop the nonlocal improvement methods with
or without regularization in terms of the GKSL master equation given in
Sec 2 and density matrices. The work [11] develops such the Krotov type
method in terms of the similar Markovian master equation and similar to
p-method-reg(s, ), but only with coherent control and regularization. The
difference from [13;37] is that these works consider for the Schrédinger
(linear in ¢ and control) and Gross—Pitaevskii (not linear in ) equations
the corresponding Krotov type methods with regularization (with s = 0 or
s = 1 in our terms). The works [20, § 6.5], [21] consider the Schrédinger
equation and the improvement methods with or without regularization
(with s = 0 in our terms). Thus, we take into account and combine
various known ideas and constructions to reflect the specifics (density ma-
trices, two types of controls, two qubits, etc.) of the quantum problem
and to develop the methodology of the nonlocal improvement methods to
open quantum systems. Sec. 3.6 describes some interesting results of the
formulated methods. Various aspects of solving the appearing equations
whose r.h.s. are, in general, discontinuous in p, x, and convergence of
the methods should be carefully studied with numerical experiments in
subsequent works. Using the dual annealing method, in Sec. 4 non-trivial
incoherent controls were found for some objective functionals showing the
appearance of the environment as a useful resource.

This article was prepared following involvement of the authors in the
section “Quantum Control” of the International school-seminar “Nonlinear
Analysis and Extremal Problems” (Irkutsk, 15-22 July, 2022). Irkutsk is
known as a place where some Krotov type methods were developed.

References

1. Antipin A.S. Minimization of convex functions on convex sets by means of
differential equations. Differ. Equat. 1994, vol. 30, no. 9, pp. 1365-1375.

Ussectust IpkyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2023. T. 45. C. 3-23



10.

11.

12.

13.

14.

15.

16.

17.

18.

KROTOV TYPE OPTIMIZATION ... 21

Antonik V.G., Srochko V.A. The projection method in linear-quadratic problems
of optimal control. Comput. Math. Math. Phys., 1998, vol. 38, pp. 543-551.
Arguchintsev A.V., Dykhta V.A., Srochko V.A. Optimal control: non-
local conditions, computational methods, and the variational principle of
maximum. Russian Math. (Iz. VUZ), 2009, vol. 53, no. 1, pp. 1-35.
https://doi.org/10.3103/S1066369X09010010

Boscain U., Sigalotti M., Sugny D. Introduction to the Pontryagin maximum
principle for quantum optimal control. PRX Quantum, 2021, art. no. 030203.
https://doi.org/10.1103/PRXQuantum.2.030203

Buldaev A.S. Optimization Methods of Control Systems: Tutorial. Ulan-Ude,
ESSTU Publ., 2002. (in Russian) https://search.rsl.ru/ru/record/01002370365
Buldaev A.S., Morzhin O.V. Improvement of controls in nonlinear systems on basis
of boundary value problems. The Bull. Irkutsk State Univ. Ser. Math., 2009, vol. 2,
no. 1, pp. 94-107. (in Russian)

Butkovskiy A.G., Samoilenko Yu.I. Control of Quantum-Mechanical Processes and
Systems. Transl. of the book published in 1984 in Russian, Dordrecht, Kluwer Acad.
Publ., 1990.

Caneva T., Calarco T., Montangero S. Chopped random-basis quantum opti-
mization. Phys. Rev. A, 2011, vol. 84, art. no. 022326.
https://doi.org/10.1103/PhysRevA.84.022326

de Fouquieres P., Schirmer S.G., Glaser S.J., Kuprov I. Second order gradi-
ent ascent pulse engineering. J. Magn. Reson., 2011, vol. 212, pp. 412-417.
https://doi.org/10.1016/j.jmr.2011.07.023

Dong D.-Y., Chen C.-L., Tarn T.-J., Pechen A., Rabitz H. Incoherent con-
trol of quantum systems with wavefunction controllable subspaces via quantum
reinforcement learning. IEEE Trans. Syst. Man Cybern., 2008, pp. 957-962.
https://doi.org/10.1109/TSMCB.2008.926603

Goerz M.H., Reich D.M., Koch C.P. Optimal control theory for a unitary oper-
ation under dissipative evolution. New J. Phys., 2014, vol. 16, art. no. 055012.
(Corrigendum: New J. Phys., 2021, art. no. 039501. Also arXiv:1312.0111).
https://doi.org/10.1088/1367-2630/16/5/055012

Gough J., Belavkin V.P., Smolyanov O.G. Hamilton—-Jacobi-Bellman equations for
quantum optimal feedback control. J. Opt. B: Quantum Semiclass. Opt., 2005,
vol. 7(10), pp. S237-S244. https://doi.org/10.1088/1464-4266/7/10,/006

Jager G., Reich D.M., Goerz M.H., Koch C.P., Hohenester U. Optimal quantum con-
trol of Bose-Einstein condensates in magnetic microtraps: Comparison of GRAPE
and Krotov optimization schemes. Phys. Rev. A, 2014, vol. 90, art. no. 033628.
https://doi.org/10.1103/PhysRevA.90.033628

Judson R.S., Rabitz H. Teaching lasers to control molecules. Phys. Rev. Lett., 1992,
vol. 68, art. no. 1500. https://doi.org/10.1103/PhysRevLett.68.1500

Kazakov V.A., Krotov V.F. Optimal control of resonant interaction between light
and matter. Automat. Remote Control, 1987, pp. 430—434.

Kallush S., Dann R., Kosloff R. Controlling the uncontrollable: Quantum con-
trol of open system dynamics. Sci. Adv., 2022, vol. 8, art. no. eadd0828.
https://doi.org/10.1126 /sciadv.add0828

Khaneja N.; Reiss T., Kehlet C., Schulte-Herbriiggen T., Glaser S.J. Opti-
mal control of coupled spin dynamics: design of NMR pulse sequences by
gradient ascent algorithms. J. Magn. Reson., 2005, vol. 172, pp. 296-305.
https://doi.org/10.1016/j.jmr.2004.11.004

Koch C.P., Boscain U., Calarco T., Dirr G., Filipp S., Glaser S.J., Kosloff R.,
Montangero S., Schulte-Herbriiggen T., Sugny D., Wilhelm F.K. Quantum optimal
control in quantum technologies. Strategic report on current status, visions and



22

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

O.V.MORZHIN, A.N. PECHEN

goals for research in Europe. EPJ Quantum Technol., 2022, vol. 9, art. no. 19.
https://doi.org/10.1140/epjqt/s40507-022-00138-x

Krotov V.F., Feldman I.N. An iterative method for solving problems of optimal
control. Engrg. Cybern., 1983, vol. 21, no. 2, pp. 123-130.

Krotov V.F. Global Methods in Optimal Control Theory. New York, Marcel Dekker,
Inc., 1996.

Krotov V.F. Control of the quantum systems and some ideas of the op-
timal control theory. Autom. Remote Control, 2009, vol. 70, pp. 357-365.
https://doi.org/10.1134/S0005117909030035

Krotov V.F., Bulatov A.V., Baturina O.V. Optimization of linear systems with
controllable coefficients. Autom. Remote Control, 2011, vol. 72, pp. 1199-1212.
https://doi.org/10.1134/S0005117911060063

Krotov V.F., Morzhin O.V., Trushkova E.A. Discontinuous solutions of the optimal
control problems. Iterative optimization method. Automat. Remote Control, 2013,
vol. 74, pp. 1948-1968. https://doi.org/10.1134/S0005117913120035

Lokutsievskiy L., Pechen A. Reachable sets for two-level open quantum systems
driven by coherent and incoherent controls. J. Phys. A, 2021, art. no. 395304.
https://doi.org/10.1088/1751-8121 /ac19{8

Morzhin O.V. Nonlocal improvement of controlling functions and parameters
in nonlinear dynamical systems. Autom. Remote Control, 2012, pp. 1822-1837.
https://doi.org/10.1134/S0005117912110057

Morzhin O.V., Pechen A.N. Krotov method for optimal control of closed
quantum systems. Russian Math. Surveys, 2019, vol. 74, pp. 851-908.
https://doi.org/10.1070/RM9835

Morzhin O.V., Pechen A.N. Maximization of the overlap between density
matrices for a two-level open quantum system driven by coherent and in-
coherent controls. Lobachevskit J. Math., 2019, wvol. 40, pp. 1532-1548.
https://doi.org/10.1134/5S1995080219100202

Morzhin O.V., Pechen A.N. Optimal state manipulation for a two-qubit system
driven by coherent and incoherent controls. Quantum Inf. Process., 2023, vol. 22,
art. no. 241. https://doi.org/10.1007/s11128-023-03946-x

Oza A., Pechen A., Dominy J., Beltrani V., Moore K., Rabitz H. Optimization
search effort over the control landscapes for open quantum systems with Kraus-map
evolution. J. Phys. A, 2009, vol. 42, art. no. 205305. https://doi.org/10.1088/1751-
8113/42/20/205305

Pechen A., Rabitz H. Teaching the environment to control quantum systems. Phys.
Rev. A, 2006, vol. 73, art. no. 062102. https://doi.org/10.1103/PhysRevA.73.062102
Pechen A. Engineering arbitrary pure and mixed quantum states. Phys. Rev. A,
2011, vol. 84, art. no. 042106. https://doi.org/10.1103/PhysRevA.84.042106
Pechen A.N., Borisenok S., Fradkov A.L. Energy control in a quantum oscillator
using coherent control and engineered environment. Chaos, Solitons & Fractals,
2022, vol. 164, art. no. 112687. https://doi.org/10.1016/j.chaos.2022.112687
Petruhanov V.N., Pechen A.N. Quantum gate generation in two-level open quantum
systems by coherent and incoherent photons found with gradient search. Photonics,
2023, vol. 10, art. no. 220. https://doi.org/10.3390/photonics10020220

Saff E.B., Kuijlaars A.B.J. Distributing many points on a sphere. Math. Intell.,
1997, vol. 19, no. 1, pp. 5-11. https://doi.org/10.1007/BF03024331

Srochko V.A. Iterative Methods for Solving Optimal Control Problems. Moscow,
Fizmatlit Publ., 2000. (in Russian) https://search.rsl.ru/ru/record /01000686861
Srochko V.A., Ushakova S.N. The method of complete quadratic approximation in
optimal control problems. Russian Math. (Iz. VUZ), 2004, no. 1, pp. 84-90.

Ussectust IpkyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2023. T. 45. C. 3-23



KROTOV TYPE OPTIMIZATION ... 23

37. Tannor D.J., Kazakov V., Orlov V. Control of photochemical branching: Novel
procedures for finding optimal pulses and global upper bounds. Time-Dependent
Quantum Molecular Dynamics. Boston, Springer, 1992, pp. 347-360.
https://doi.org/10.1007/978-1-4899-2326-4_24

38. Vasiliev O.V., Arguchintsev A.V. Optimization Methods in Tasks and Ezercises.
Moscow, Fizmatlit Publ., 1999. (in Russian)
https://search.rsl.ru/ru/record /01000641549

39. Zhu W., Rabitz H. A rapid monotonically convergent iteration algorithm for quan-
tum optimal control over the expectation value of a positive definite operator.
J. Chem. Phys., 1998, vol. 109, pp. 385-391. https://doi.org/10.1063/1.476575

06 aBTOpax

Mopxkun OJier BacuibeBud, KaHs.
dwus.-mMar. HAyK, CT. HAYY. COTP. OTIEA
MaTEeMaTUIECKUX METOJIOB KBAHTOBBIX
TexHosioruit MaTeMaTiH1ecKoro HHCTH-
tyta um. B. A. Crekiosa PAH, yuact-
umuk npoekta B MUCUC, Mocksa,
119991, Poccuiickas @eneparus,
https:
//orcid.org/0000-0002-9890-1303,
www.mathnet.ru/rus/person30382

Ileuens Anexkcauap HukosaeBud,
J-p $u3.-MaT. HAYK,

npod. PAH, zapenyomuii oriesiom
MaTeMaTUIeCKUX METOJ0B KBAHTOBBIX
TexHojI0ruil MareMaTnaeckoro HHCTHU-
tyta um. B.A. Creknosa PAH, mpod.
u 1. Hayd. corp. B MUCUC, 3am. 3aB.
Kadeapoit «MeTobl COBpeMeHHOit
marematukus MOTU, Mocksa,
119991, Poccuiickass Peepartius,
https:
//orcid.org/0000-0001-8290-8300,
www.mathnet.ru/rus/person17991

About the authors

Oleg V. Morzhin, Cand. Sci.
(Phys.— Math.), Senior Scientific
Researcher at the Department of
Mathematical Methods for Quantum
Technologies, Steklov Mathematical
Institute of RAS, project member at
MISIS, Moscow, 119991, Russian
Federation, https:
//orcid.org/0000-0002-9890-1303,
www.mathnet.ru/eng/person30382

Alexander N. Pechen,

Dr. Sci. (Phys.-Math.),

RAS Prof., Head of the Department of
Mathematical Methods for Quantum
Technologies, Steklov Mathematical
Institute of RAS, Prof. and Chief
Researcher at MISIS, Deputy Head of
the Department “Methods of Modern
Mathematics” of MIPT, Moscow,
119991, Russian Federation, https:
//orcid.org/0000-0001-8290-8300,
www.mathnet.ru/eng/person17991

Hocmynuaa 6 pedaryuro / Received 05.09.2022
Iocmynuaa nocae peuensuposanus / Revised 01.06.2023
ITpunama x nybaukayuu / Accepted 09.06.2023



