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Abstract. This work considers two-qubit open quantum systems driven by coherent
and incoherent controls. Incoherent control induces time-dependent decoherence rates
via time-dependent spectral density of the environment which is used as a resource
for controlling the system. The system evolves according to the Gorini–Kossakowski–
Sudarshan–Lindblad master equation with time-dependent coefficients. For two types of
interaction with coherent control, three types of objectives are considered: 1) maximizing
the Hilbert–Schmidt overlap between the final and target density matrices; 2) minimizing
the Hilbert–Schmidt distance between these matrices; 3) steering the overlap to a given
value. For the first problem, we develop the Krotov type methods directly in terms of
density matrices with or without regularization for piecewise continuous controls with
constaints and find the cases where the methods produce (either exactly or with some
precision) zero controls which satisfy the Pontryagin maximum principle and produce
the overlap’s values close to their upper bounds. For the problems 2) and 3), we find
cases when the dual annealing method steers the objectives close to zero and produces a
non-zero control.

Keywords: open quantum system, incoherent quantum control, nonlocal improvement,
optimization



4 O.V.MORZHIN, A.N. PECHEN

Acknowledgements: Work for subsections 3.1–3.4, 3.6 was supported by the Russian
Science Foundation grant No. 22-11-00330 (https://rscf.ru/en/project/22-11-00330/),
and performed in Steklov Mathematical Institute of Russian Academy of Sciences, and
for section 4 by the federal academic leadership program “Priority 2030” in MISIS.

For citation: MorzhinO.V., PechenA.N. Krotov Type Optimization of Coherent
and Incoherent Controls for Open Two-Qubit Systems. The Bulletin of Irkutsk State
University. Series Mathematics, 2023, vol. 45, pp. 3–23.
https://doi.org/10.26516/1997-7670.2023.45.3

Научная статья

Оптимизация типа Кротова когерентного и некогерентно-
го управлений для открытых двухкубитных систем

О. В.Моржин1,2B, А. Н.Печень1,2B

1 Математический институт им. В. А.Стеклова РАН, Москва, Российская Федера-
ция
2 Университет науки и технологий МИСИС, Москва, Российская Федерация
B morzhin.oleg@yandex.ru
B apechen@gmail.com

Аннотация. Рассмотрены двухкубитные открытые квантовые системы с когерент-
ным и некогерентным управлениями, где второе индуцирует зависящие от времени
скорости декогеренции через зависящую от времени спектральную плотность окру-
жения, используемую здесь как ресурс для управления системой. Система эволюци-
онирует согласно мастер-уравнению Горини – Косаковского – Сударшана – Линдб-
лада с зависящими от времени коэффициентами. Для двух типов взаимодействия
с когерентным управлением рассмотрены три типа критериев: 1) максимизация
перекрытия Гильберта – Шмидта между финальной и целевой матрицами плот-
ности; 2) минимизация расстояния Гильберта – Шмидта между этими матрицами;
3) стремление перекрытия к заданному значению. Для первой задачи развиваем
методы типа Кротова в терминах матриц плотности с регуляризацией и без для
кусочно-непрерывных управлений с ограничениями и находим случаи, где методы
дают (либо точно, либо с некоторой точностью) нулевые управления, которые удо-
влетворяют принципу максимума Понтрягина и дают значения перекрытия, близкие
к верхним границам. Для задач 2) и 3) найдены случаи, когда метод двойного отжига
делает критерии близкими к нулю и дает ненулевое управление.

Ключевые слова: открытая квантовая система, некогерентное квантовое управ-
ление, нелокальное улучшение, оптимизация

Благодарности: Подразделы 3.1–3.4, 3.6 выполнены за счет гранта Российского
научного фонда № 22-11-00330 (https://rscf.ru/project/22-11-00330/) в Математиче-
ском институте им. В.А. Стеклова Российской академии наук, раздел 4 в рамках
федеральной академической программы «Приоритет 2030» в МИСИС.

Ссылка для цитирования: MorzhinO. V., Pechen A.N. Krotov Type Optimization
of Coherent and Incoherent Controls for Open Two-Qubit Systems // Известия Иркут-
ского государственного университета. Серия Математика. 2023. Т. 45. C. 3–23.
https://doi.org/10.26516/1997-7670.2023.45.3

Известия Иркутского государственного университета.
Серия «Математика». 2023. Т. 45. С. 3–23



KROTOV TYPE OPTIMIZATION ... 5

Dedicated to the 90th anniversary of the birth and to the memory
of Vadim Fedorovich Krotov (1932–2015)

1. Introduction

Optimal control of quantum systems attracts high interest due to vari-
ous applications ranging from quantum computing to laser chemistry [18].
In many situations, controlled quantum systems are open, i.e., interacting
with the environment. While in some situations the environment is treated
as an obstacle, in other cases it can be a useful control resource, as for
example was proposed to do via incoherent control in [30; 31], where spec-
tral (generally time-dependent and non-equilibrium) density of incoherent
photons is used as control function jointly with coherent control by lasers
to manipulate the quantum system dynamics.

In the approach of [30], which is used in the present work, the incoherent
control induces time-dependent decoherence rates 𝛾𝑘(𝑡) via time-dependent
spectral density of the environment 𝑛(𝑡), in addition to coherent control 𝑢,
so that density matrix evolves according to the master equation

�̇�(𝑡) = −𝑖[𝐻0 +𝐻𝑐(𝑡), 𝜌(𝑡)] +
∑︁

𝑘
𝛾𝑘(𝑡)𝒟𝑘(𝜌(𝑡)), (1.1)

where 𝐻0 is the free Hamiltonian, 𝐻𝑐(𝑡) is the Hamiltonian induced by con-
trol 𝑐 = (𝑢, 𝑛), 𝒟𝑘 is a Gorini–Kossakowski–Sudarshan–Lindblad (GKSL)
dissipator, and [𝐴,𝐵] = 𝐴𝐵−𝐵𝐴 is the commutator of matrices 𝐴 and 𝐵.
In addition to general consideration, two physical classes of the environment
were exploited — incoherent photons and quantum gas, with two explicit
forms of 𝒟𝑘 derived in the weak coupling limit (WCL) and low density limit,
respectively. In [31], it was shown that for the master equation (1.1) with
𝒟𝑘 derived in the WCL (describing atom interacting with photons) generic
𝑁 -level quantum systems become approximately completely controllable in
the set of density matrices. Following this general approach, various control
problems for one- and two-qubit open systems controlled by simultaneous
coherent and incoherent controls were considered [24;27;33].

Various tools are used in quantum optimal control such as Pontryagin
maximum principle (PMP) [4], Krotov type methods [11; 13; 15; 21; 26;
37], [20, § 6.5]), Hamilton–Jacobi–Bellmann equation [12], Zhu–Rabitz [39]
method, GRadient Ascent Pulse Engineering (GRAPE) [13;17;33], GRAPE
with quasi-Newton optimizers [9], speed gradient method [32], gradient
free Chopped RAndom Basis (CRAB) optimization [8], genetic algorithms
[14;30], machine learning [10]. Riemannian gradient optimization approach
over complex Stiefel manifolds for controlling open quantum systems for
quantum technologies was developed in [29].

Theory of optimal control contains the approach based on deriving spe-
cial nonlocal exact increment formulas and constructing the corresponding
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tools for various problems (e.g., [2;3;5;6;25;35]). For the problems linear in
real-valued states (including bilinear), e.g., the 𝑥- and 𝜓-procedures (𝜓 is
co-state) ( [35, Ch. 1], [38, § 5.4], [5, pp. 15–16, 31–32], [3, Sec. 3]) are known,
where the 𝑥-procedure is an adaptation of the general Krotov method (see
about this method, e.g., [19], [20, Ch. 6]) without regularization, while the
𝜓-procedure is symmetrical one.

This article considers two-qubit (𝑁 = 4) open quantum systems evolv-
ing according to the GKSL master equation with simultaneous coherent
and incoherent controls, with two types of interaction with coherent con-
trol. Sec. 2 considers three types of objectives: 1) maximizing the overlap
⟨𝜌(𝑇 ), 𝜌target⟩; 2) minimizing ‖𝜌(𝑇 ) − 𝜌target‖; 3) steering the overlap to a
given𝑀 ∈ (0, 1), i.e. minimizing |⟨𝜌(𝑇 ), 𝜌target⟩−𝑀 |. In Sec. 3, we develop
for the problem 1) the Krotov type methods in terms of density matrices
with or without regularization for piecewise continuous controls with con-
straints and find the cases where the methods produce (either exactly or
with some precision) zero controls which satisfy the PMP and produce
overlap’s values which, for sufficiently large 𝑇 , are close to max

𝜌
⟨𝜌, 𝜌target⟩.

In Sec. 4, for the problems 2) and 3), we use a parameterized class of
controls and find cases when the dual annealing method steers objectives
close to zero and produces non-zero control. Sec. 5 resumes the article.

2. Two-Qubit System and Objective Functionals

For two qubits, the Hilbert space is ℋ = C2⊗C2. Consider the following
GKSL master equation with coherent and incoherent controls:

�̇�(𝑡) = −𝑖
[︀
𝐻0 +𝐻𝑐(𝑡), 𝜌(𝑡)

]︀
+ 𝜀ℒ𝐷𝑛(𝑡)(𝜌(𝑡)), 𝜌(0) = 𝜌0, 𝑡 ∈ [0, 𝑇 ], (2.1)

where 𝜌(𝑡) : ℋ → ℋ is density matrix (positive semi-definite, 𝜌(𝑡) ≥ 0,
with unit trace, Tr𝜌(𝑡) = 1); the parameter 𝜀 > 0 describes strength of
the coupling between the system and its environment; the Hamiltonian
𝐻𝑐(𝑡) = 𝜀𝐻eff,𝑛(𝑡) + 𝐻𝑢(𝑡), where scalar coherent control 𝑢 and incoherent
control 𝑛 = (𝑛1, 𝑛2) are considered as piecewise continuous on [0, 𝑇 ], control
𝑐 = (𝑢, 𝑛); effective Hamiltonian 𝐻eff,𝑛(𝑡) depends on 𝑛(𝑡) and describes the

Lamb shift, Hamiltonian 𝐻𝑢(𝑡) describes interaction with 𝑢(𝑡), ℒ𝐷𝑛(𝑡)(𝜌(𝑡)) is
the controlled superoperator of dissipation, 𝜌0 is the initial density matrix.
The system of units is such that the Planck’s constant ~ = 1. Consider

𝐻0 := 𝐻0,1 +𝐻0,2, 𝐻0,𝑗 :=
𝜔𝑗
2
𝑊𝑗 , 𝑊1 := 𝜎𝑧 ⊗ I2, 𝑊2 := I2 ⊗ 𝜎𝑧,

𝐻eff,𝑛(𝑡) :=
2∑︁
𝑗=1

𝐻eff,𝑛𝑗(𝑡), 𝐻eff,𝑛𝑗(𝑡) := Λ𝑗𝑛𝑗(𝑡)𝑊𝑗 , 𝐻𝑢(𝑡) := 𝑉 𝑢(𝑡),

Известия Иркутского государственного университета.
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𝑉 = 𝑉1 := 𝑄1 ⊗ I2 + I2 ⊗𝑄2 or 𝑉 = 𝑉2 := 𝑄1 ⊗𝑄2,

𝑄𝑗 :=
∑︁

𝛼=𝑥,𝑦,𝑧
𝜆𝑗𝛼𝜎𝛼 = sin 𝜃𝑗 cos𝜙𝑗𝜎𝑥 + sin 𝜃𝑗 sin𝜙𝑗𝜎𝑦 + cos 𝜃𝑗𝜎𝑧,

where 𝑗 = 1, 2, the parameters 𝜔𝑗 , Λ𝑗 > 0, 𝜆𝑗 := (𝜆𝑗𝑥, 𝜆
𝑗
𝑦, 𝜆

𝑗
𝑧) ∈ R3 is a

given unit vector, 𝜎𝑥 =

(︂
0 1
1 0

)︂
, 𝜎𝑦 =

(︂
0 −𝑖
𝑖 0

)︂
, and 𝜎𝑧 =

(︂
1 0
0 −1

)︂
are Pauli

matrices. The work [28] considers the case 𝑄1 = 𝑄2 = 𝜎𝑥, or, equivalently,
𝜃𝑗 = 𝜋/2 and 𝜙𝑗 = 0.

The superoperator of dissipation acts on 𝜌(𝑡) as

ℒ𝐷𝑛(𝑡)(𝜌(𝑡)) :=
∑︁2

𝑗=1

[︁
Ω𝑗 (𝑛𝑗(𝑡) + 1)

(︁
2𝜎−𝑗 𝜌(𝑡)𝜎

+
𝑗 −

{︁
𝜎+𝑗 𝜎

−
𝑗 , 𝜌(𝑡)

}︁)︁
+Ω𝑗𝑛𝑗(𝑡)

(︁
2𝜎+𝑗 𝜌(𝑡)𝜎

−
𝑗 −

{︁
𝜎−𝑗 𝜎

+
𝑗 , 𝜌(𝑡)

}︁)︁]︁
,

where the parameters Ω𝑗 > 0, 𝑗 = 1, 2; {𝐴,𝐵} = 𝐴𝐵 + 𝐵𝐴 denotes anti-
commutator of matrices 𝐴 and 𝐵. The matrices 𝜎±1 = 𝜎±⊗I2, 𝜎

±
2 = I2⊗𝜎±

are obtained with 𝜎+ =

(︂
0 0
1 0

)︂
, 𝜎− =

(︂
0 1
0 0

)︂
, I2 is the 2×2 identity matrix.

Set the following constraints including the required 𝑛𝑗(𝑡) ≥ 0:

|𝑢(𝑡)| ≤ 𝜇, 0 ≤ 𝑛𝑗(𝑡) ≤ 𝑛max, 𝑗 = 1, 2, 𝜇, 𝑛max > 0, 𝑡 ∈ [0, 𝑇 ]. (2.2)

For the system (2.1), consider the control objectives

𝐽1(𝑐) := ⟨𝜌(𝑇 ), 𝜌target⟩ = Tr(𝜌(𝑇 )𝜌target)→ sup (fixed 𝑇 > 0), (2.3)

𝐽2(𝑐, 𝑇 ) := 𝑇 + 𝑃‖𝜌(𝑇 )− 𝜌target‖ → inf, (2.4)

𝐽3(𝑐, 𝑇 ) := 𝑇 + 𝑃 |⟨𝜌(𝑇 ), 𝜌target⟩ −𝑀 | → inf, 𝑀 ∈ (0, 1), (2.5)

where the Hilbert–Schmidt distance is ‖𝜌 − 𝜎‖ =
[︀
Tr
(︀
(𝜌− 𝜎)2

)︀]︀1/2
, 𝜌(𝑇 )

is the final state for given controls 𝑢, 𝑛; 𝑃 > 0 is some penalty coefficient.
For (2.4) and (2.5), consider the following parameterized class of controls

(inspired by CRAB [8] and (12) from [16]):

𝑢(𝑡) = exp
(︁
−ℎ𝑢 (𝑡− 𝑇/2)2

)︁∑︁𝐾

𝑘=1
(𝐴𝑘 sin(𝜈𝑘𝑡) +𝐵𝑘 cos(𝜈𝑘𝑡)) , (2.6)

𝑛𝑗(𝑡) = 𝐶𝑗 exp
(︁
−ℎ𝑛𝑗 (𝑡− 𝑇/2)

2
)︁
, 𝑗 = 1, 2, (2.7)

where 𝐾 and 𝜈1, . . . , 𝜈𝐾 are given. The parameters ℎ𝑢, ℎ𝑛1 , ℎ𝑛2 , 𝐴1, . . . ,
𝐴𝐾 , 𝐵1, . . . , 𝐵𝐾 , and 𝐶1, 𝐶2 are bounded from above and below, where the
zero lower bound for 𝐶𝑗 is required and other bounds are arbitrary.
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3. Krotov Type Methods for Maximizing the Overlap

For (2.3), introduce the auxiliary objective

𝐼𝛼(𝑐; 𝑐(𝑘)) := 𝐼(𝑐) +
̂︀𝛼
2𝛼
‖𝑐− 𝑠 𝑐(𝑘)‖2𝐿2[0,𝑇 ] → inf, 𝐼(𝑐) := 𝑏− 𝐽1(𝑐), (3.1)

where 𝑏 ∈ {max
𝜌
⟨𝜌, 𝜌target⟩, 1}, 𝛼 > 0, ̂︀𝛼 ∈ {0, 1} turns off and on the

regularization; 𝑐(𝑘) = (𝑢(𝑘), 𝑛
(𝑘)
1 , 𝑛

(𝑘)
2 ) is a given control, 𝑠 ∈ {0, 1} switches

between the two regularization’s types. The works [21], [20, § 6.5] for the
Schrödinger equation consider both presence and absence of regularization
(with 𝑠 = 0 in our terms). The case 𝑠 = 0 also reminds [37], where the
Schrödinger equation is considered. The case 𝑠 = 1 reminds the regu-
larization in [35, p. 61] leading to the projection improvement procedures
under constrained control; also this case reminds the regularized Krotov
type methods used in [11;13] for various quantum problems.

3.1. Pontryagin Function and Krotov Lagrangian

For (3.1), the corresponding Pontryagin function is

ℎ𝛼(𝑡, 𝜒, 𝜌, 𝑐) =
⟨︀
𝜒,−𝑖[𝐻𝑐, 𝜌] + 𝜀ℒ𝐷𝑛 (𝜌)

⟩︀
− ̂︀𝛼

2𝛼
‖𝑐− 𝑠𝑐(𝑘)(𝑡)‖22 =

= ⟨𝒦𝑐(𝜒, 𝜌), 𝑐⟩ − ̂︀𝛼
2𝛼
‖𝑐− 𝑠𝑐(𝑘)(𝑡)‖22 + ℎ(𝜒, 𝜌),

where 𝜒 and 𝜌 are 4× 4 density matrices; 𝑐 = (𝑢, 𝑛1, 𝑛2) ∈ R3; the function
𝒦𝑐 = (𝒦𝑢,𝒦𝑛1 ,𝒦𝑛2) consists of 𝒦𝑢(𝜒, 𝜌) = ⟨𝜒,−𝑖[𝑉, 𝜌]⟩ and

𝒦𝑛𝑗 (𝜒, 𝜌) =
⟨
𝜒,−𝑖[Λ𝑗𝑊𝑗 , 𝜌] + 𝜀Ω𝑗

(︁
2𝜎−𝑗 𝜌𝜎

+
𝑗 + 2𝜎+𝑗 𝜌𝜎

−
𝑗 −

{︀
I4, 𝜌

}︀)︁⟩
(the 4 × 4 identity matrix I4 appears in 𝒦𝑛𝑗 since 𝜎+𝑗 𝜎

−
𝑗 + 𝜎−𝑗 𝜎

+
𝑗 = I4),

𝑗 = 1, 2; the term

ℎ(𝜒, 𝜌) =
⟨
𝜒,−𝑖[𝐻𝑆 , 𝜌] + 𝜀

∑︁2

𝑗=1
Ω𝑗
(︀
2𝜎−𝑗 𝜌𝜎

+
𝑗 −

{︀
𝜎+𝑗 𝜎

−
𝑗 , 𝜌

}︀)︀⟩
.

The Krotov Lagrangian for our problem is

𝐿𝛼(𝑐, 𝜌) = 𝐺(𝜌(𝑇 ))−
∫︁ 𝑇

0
𝑅𝛼(𝑡, 𝜌(𝑡), 𝑐(𝑡))𝑑𝑡,

𝐺(𝜌(𝑇 )) = 𝑏− ⟨𝜌(𝑇 ), 𝜌target⟩+ ⟨𝜒(𝑇 ), 𝜌(𝑇 )⟩ − ⟨𝜒(0), 𝜌0⟩,

𝑅𝛼(𝑡, 𝜌, 𝑐) =
⟨︀
𝜒(𝑡),−𝑖[𝐻𝑐, 𝜌] + 𝜀ℒ𝐷𝑛 (𝜌)

⟩︀
+ ⟨�̇�(𝑡), 𝜌⟩ − ̂︀𝛼

2𝛼
‖𝑐− 𝑠𝑐(𝑘)(𝑡)‖22.
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The function 𝜒 is defined in Sec. 3.3. Note that
∫︀ 𝑇
0 𝑅𝛼(𝑡, 𝜌(𝑡), 𝑐(𝑡))𝑑𝑡 is∫︁ 𝑇

0

(︂
𝑑

𝑑𝑡
⟨𝜒(𝑡), 𝜌(𝑡)⟩ − ̂︀𝛼

2𝛼
‖𝑐(𝑡)− 𝑠𝑐(𝑘)(𝑡)‖22

)︂
𝑑𝑡 = ⟨𝜒(𝑡), 𝜌(𝑡)⟩|𝑇0−

− ̂︀𝛼
2𝛼
‖𝑐− 𝑠𝑐(𝑘)‖2𝐿2[0,𝑇 ] = 𝐺(𝜌(𝑇 ))− 𝑏+ ⟨𝜌(𝑇 ), 𝜌target⟩−

− ̂︀𝛼
2𝛼
‖𝑐− 𝑠𝑐(𝑘)‖2𝐿2[0,𝑇 ], 𝐿

𝛼(𝑐, 𝜌) = 𝑏− ⟨𝜌(𝑇 ), 𝜌target⟩+
̂︀𝛼
2𝛼
‖𝑐− 𝑠𝑐(𝑘)‖2𝐿2[0,𝑇 ].

3.2. Increment Formulas

Consider increment of 𝐿𝛼 at (admissible) controls 𝑐, 𝑐(𝑘):

𝐿𝛼(𝑐, 𝜌)− 𝐿𝛼(𝑐(𝑘), 𝜌(𝑘)) = 𝐺(𝜌(𝑇 ))−𝐺(𝜌(𝑘)(𝑇 ))−
∫︁ 𝑇

0
(𝑅𝛼(𝑡, 𝜌(𝑡), 𝑐(𝑡))−

−𝑅𝛼(𝑡, 𝜌(𝑘)(𝑡), 𝑐(𝑘)(𝑡)))𝑑𝑡, (3.2)

where the process (𝑐(𝑘), 𝜌(𝑘)) is either given or obtained at the previous
iteration. Following the idea of [19], set the conditions

𝐺(𝜌(𝑇 )) ≤ 𝐺(𝜌(𝑘)(𝑇 )) and 𝑅𝛼(𝑡, 𝜌(𝑡), 𝑐(𝑡)) ≥ 𝑅𝛼(𝑡, 𝜌(𝑘)(𝑡), 𝑐(𝑘)(𝑡))
to make 𝐿𝛼(𝑐, 𝜌) ≤ 𝐿𝛼(𝑐(𝑘), 𝜌(𝑘)). To satisfy the inequality condition for 𝐺,
we simply take 𝐺(𝜌(𝑇 )) = 𝐺(𝜌(𝑘)(𝑇 )) that gives

𝐺(𝜌(𝑇 ))−𝐺(𝜌(𝑘)(𝑇 )) = ⟨𝜒(𝑇 )− 𝜌target, 𝜌(𝑇 )− 𝜌(𝑘)(𝑇 )⟩ = 0

and, as the result, implies the transversality condition 𝜒(𝑇 ) = 𝜌target.
We can represent the integrand in (3.2) as Δ1𝑅

𝛼 +Δ2𝑅, where

Δ1𝑅
𝛼 = 𝑅𝛼(𝑡, 𝜌(𝑡), 𝑐(𝑡))−𝑅𝛼(𝑡, 𝜌(𝑡), 𝑐(𝑘)(𝑡)),

Δ2𝑅 = 𝑅𝛼(𝑡, 𝜌(𝑡), 𝑐(𝑘)(𝑡))−𝑅𝛼(𝑡, 𝜌(𝑘)(𝑡), 𝑐(𝑘)(𝑡)).
Here Δ1𝑅

𝛼 and Δ2𝑅 are constructed similarly to [19], [20, p. 243]. Then

Δ2𝑅 = ⟨𝜒(𝑡),−𝑖[𝐻𝑐(𝑘)(𝑡), 𝜌(𝑡)− 𝜌
(𝑘)(𝑡)] + 𝜀(ℒ𝐷

𝑛(𝑘)(𝑡)
(𝜌(𝑡))

−ℒ𝐷
𝑛(𝑘)(𝑡)

(𝜌(𝑘)(𝑡)))⟩+ ⟨�̇�(𝑡), 𝜌(𝑡)− 𝜌(𝑘)(𝑡)⟩ = ⟨𝜌(𝑡)− 𝜌(𝑘)(𝑡),

= 𝑖[𝐻𝑐(𝑘)(𝑡), 𝜒(𝑡)] + �̇�(𝑡)⟩+ 𝜀⟨𝜒(𝑡),ℒ𝐷
𝑛(𝑘)(𝑡)

(𝜌(𝑡))− ℒ𝐷
𝑛(𝑘)(𝑡)

(𝜌(𝑘)(𝑡))⟩,

where the anticommutativity property of commutator and cyclic permuta-
tion of matrices under trace are used. To satisfy the condition Δ2𝑅 ≥ 0,
let Δ2𝑅 = 0. Transform the last term in Δ2𝑅, which is

𝜀
⟨
𝜒(𝑡),

∑︁2

𝑗=1

[︁(︁
Ω𝑗(𝑛

(𝑘)
𝑗 (𝑡) + 1)(2𝜎−𝑗 𝜌(𝑡)𝜎

+
𝑗 − {𝜎

+
𝑗 𝜎

−
𝑗 , 𝜌(𝑡)}) + Ω𝑗𝑛

(𝑘)
𝑗 (𝑡)×

× (2𝜎+𝑗 𝜌(𝑡)𝜎
−
𝑗 − {𝜎

−
𝑗 𝜎

+
𝑗 , 𝜌(𝑡)})

)︁
−
(︁
Ω𝑗(𝑛

(𝑘)
𝑗 (𝑡) + 1)(2𝜎−𝑗 𝜌

(𝑘)(𝑡)𝜎+𝑗 −

− {𝜎+𝑗 𝜎
−
𝑗 , 𝜌

(𝑘)(𝑡)}) + Ω𝑗𝑛
(𝑘)
𝑗 (𝑡)(2𝜎+𝑗 𝜌

(𝑘)(𝑡)𝜎−𝑗 − {𝜎
−
𝑗 𝜎

+
𝑗 , 𝜌

(𝑘)(𝑡)})
)︁]︁⟩



10 O.V.MORZHIN, A.N. PECHEN

to 𝜀
⟨︀
ℒ𝐷,†
𝑛(𝑘)(𝑡)

(𝜒(𝑡)), 𝜌(𝑡)− 𝜌(𝑘)(𝑡)
⟩︀
with

ℒ𝐷,†
𝑛(𝑘)(𝑡)

(𝜒(𝑡)) :=
∑︁2

𝑗=1

[︁
Ω𝑗

(︁
𝑛
(𝑘)
𝑗 (𝑡) + 1

)︁(︁
2𝜎+𝑗 𝜒(𝑡)𝜎

−
𝑗 −

{︁
𝜎+𝑗 𝜎

−
𝑗 , 𝜒(𝑡)

}︁)︁
+

+Ω𝑗𝑛
(𝑘)
𝑗 (𝑡)

(︁
2𝜎−𝑗 𝜒(𝑡)𝜎

+
𝑗 −

{︁
𝜎−𝑗 𝜎

+
𝑗 , 𝜒(𝑡)

}︁)︁]︁
,

here “†” reflects that ⟨𝜒(𝑡), 𝑇1(𝜌(𝑡))−𝑇1(𝜌(𝑘)(𝑡))⟩ = ⟨𝑇 †
1 (𝜒(𝑡)), 𝜌(𝑡)−𝜌(𝑘)(𝑡)⟩

and ⟨𝜒(𝑡), 𝑇2(𝜌(𝑡))− 𝑇2(𝜌(𝑘)(𝑡))⟩ = ⟨𝑇 †
2 (𝜒(𝑡)), 𝜌(𝑡)− 𝜌(𝑘)(𝑡)⟩, where the op-

erators 𝑇1 := 2𝜎−𝑗 · 𝜎+𝑗 , 𝑇2 := 2𝜎+𝑗 · 𝜎−𝑗 and (𝜎+𝑗 )
⊤ = 𝜎−𝑗 , (𝜎

−
𝑗 )

⊤ = 𝜎+𝑗 ; note

that 𝜎+𝑗 𝜎
−
𝑗 , 𝜎

−
𝑗 𝜎

+
𝑗 are Hermitian. See also [11]. The condition Δ2𝑅 = 0

leads to the adjoint system

�̇�(𝑘)(𝑡) = −𝑖[𝐻𝑐(𝑘)(𝑡), 𝜒
(𝑘)(𝑡)]− 𝜀ℒ𝐷,†

𝑛(𝑘)(𝑡)
(𝜒(𝑡)), 𝜒(𝑘)(𝑇 ) = 𝜌target. (3.3)

The system is solved backward in time. Further, we see that

Δ1𝑅
𝛼 = ℎ𝛼(𝑡, 𝜒(𝑘)(𝑡), 𝜌(𝑡), 𝑐(𝑡))− ℎ𝛼(𝑡, 𝜒(𝑘)(𝑡), 𝜌(𝑡), 𝑐(𝑘)(𝑡)) = ⟨𝒦𝑐(𝜒(𝑘)(𝑡),

𝜌(𝑡)), 𝑐(𝑡)− 𝑐(𝑘)(𝑡)⟩ − ̂︀𝛼
2𝛼
‖𝑐(𝑡)− 𝑠𝑐(𝑘)(𝑡)‖22 +

̂︀𝛼
2𝛼
‖𝑐(𝑘)(𝑡)− 𝑠𝑐(𝑘)(𝑡)‖22.

The first increment formula (for 𝐼𝛼) is

𝐼𝛼(𝑐; 𝑐(𝑘))− 𝐼𝛼(𝑐(𝑘); 𝑐(𝑘)) = −
∫︁ 𝑇

0

(︁
⟨𝒦𝑐(𝜒(𝑘)(𝑡), 𝜌(𝑡)), 𝑐(𝑡)− 𝑐(𝑘)(𝑡)⟩ −

− ̂︀𝛼
2𝛼
‖𝑐(𝑡)− 𝑠𝑐(𝑘)(𝑡)‖22

)︁
𝑑𝑡− ̂︀𝛼

2𝛼

∫︁ 𝑇

0
‖𝑐(𝑘)(𝑡)− 𝑠𝑐(𝑘)(𝑡)‖22𝑑𝑡. (3.4)

Important that this exact and nonlocal formula does not contain any resid-
ual. If ̂︀𝛼 = 0, then 𝐼𝛼(𝑐; 𝑐(𝑘)) = 𝐼(𝑐) and ℎ(𝜒, 𝜌, 𝑐) := ℎ𝛼(𝑡, 𝜒, 𝜌, 𝑐).

Further, for deriving the second increment formula, we represent the
integrand in (3.2) as the sum Δ3𝑅+Δ4𝑅

𝛼, where

Δ3𝑅 = 𝑅(𝑡, 𝜌(𝑡), 𝑐(𝑡))−𝑅(𝑡, 𝜌(𝑘)(𝑡), 𝑐(𝑡)) =
= ⟨𝑖[𝐻𝑐(𝑡), 𝜒(𝑡)] + �̇�(𝑡) + 𝜀ℒ𝐷,†𝑛(𝑡)(𝜒(𝑡)), 𝜌(𝑡)− 𝜌

(𝑘)(𝑡)⟩,

Δ4𝑅
𝛼 = 𝑅(𝑡, 𝜌(𝑘)(𝑡), 𝑐(𝑡))−𝑅(𝑡, 𝜌(𝑘)(𝑡), 𝑐(𝑘)(𝑡)) =

= ℎ(𝜒(𝑡), 𝜌(𝑘)(𝑡), 𝑐(𝑡))− ℎ(𝜒(𝑡), 𝜌(𝑘)(𝑡), 𝑐(𝑘)(𝑡)) =

= ⟨𝒦𝑐(𝜒(𝑡), 𝜌(𝑘)(𝑡)), 𝑐(𝑡)− 𝑐(𝑘)(𝑡)⟩+ ̂︀𝛼
2𝛼
‖𝑐(𝑡)− 𝑠𝑐(𝑘)(𝑡)‖22.

For Δ3𝑅 = 0 we obtain

�̇�(𝑡) = −𝑖[𝐻𝑐(𝑡), 𝜒(𝑡)]− 𝜀ℒ
𝐷,†
𝑛(𝑡)(𝜒(𝑡)), 𝜒(𝑇 ) = 𝜌target. (3.5)

Известия Иркутского государственного университета.
Серия «Математика». 2023. Т. 45. С. 3–23
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The second increment formula (for 𝐼𝛼) is

𝐼𝛼(𝑐; 𝑐(𝑘))− 𝐼𝛼(𝑐(𝑘); 𝑐(𝑘)) = −
∫︁ 𝑇

0

(︁
⟨𝒦𝑐(𝜒(𝑡), 𝜌(𝑘)(𝑡)), 𝑐(𝑡)− 𝑐(𝑘)(𝑡)⟩ −

− ̂︀𝛼
2𝛼
‖𝑐(𝑡)− 𝑠𝑐(𝑘)(𝑡)‖22

)︁
𝑑𝑡− ̂︀𝛼

2𝛼

∫︁ 𝑇

0
‖𝑐(𝑘)(𝑡)− 𝑠𝑐(𝑘)(𝑡)‖22𝑑𝑡. (3.6)

3.3. Without Regularization: 𝜌- and 𝜒-methods

Here based on (3.4) for ̂︀𝛼 = 0, we construct the 𝜌-method. To obtain
a control 𝑐 such that 𝐼(𝑐) − 𝐼(𝑐(𝑘)) ≤ 0 and using (3.4) for ̂︀𝛼 = 0, set the
condition ⟨𝒦𝑐(𝜒(𝑘)(𝑡), 𝜌(𝑡)), 𝑐(𝑡)−𝑐(𝑘)(𝑡)⟩ ≥ 0, 𝑡 ∈ [0, 𝑇 ], for implementation
of which we introduce the following mappings:

𝑢*(𝜌, 𝑡) = arg max
|𝑢|≤𝜇

(𝒦𝑢(𝜒(𝑘)(𝑡), 𝜌)𝑢) =

=

⎧⎪⎨⎪⎩
−𝜇, 𝒦𝑢(𝜒(𝑘)(𝑡), 𝜌) < 0,

𝜇, 𝒦𝑢(𝜒(𝑘)(𝑡), 𝜌) > 0,

𝑢sing ∈ [−𝜇, 𝜇], 𝒦𝑢(𝜒(𝑘)(𝑡), 𝜌) = 0,

(3.7)

𝑛*𝑗 (𝜌, 𝑡) = arg max
𝑛𝑗∈[0,𝑛max]

(𝒦𝑛𝑗 (𝜒(𝑘)(𝑡), 𝜌)𝑛𝑗) =

=

⎧⎪⎨⎪⎩
0, 𝒦𝑛𝑗 (𝜒(𝑘)(𝑡), 𝜌) < 0,

𝑛max, 𝒦𝑛𝑗 (𝜒(𝑘)(𝑡), 𝜌) > 0,

𝑛𝑗,sing ∈ [0, 𝑛max], 𝒦𝑛𝑗 (𝜒(𝑘)(𝑡), 𝜌) = 0,

𝑗 = 1, 2. (3.8)

Define 𝑛*(𝜌, 𝑡) :=
(︀
𝑛*1(𝜌, 𝑡), 𝑛

*
2(𝜌, 𝑡)

)︀
and 𝑐*(𝜌, 𝑡) :=

(︀
𝑢*(𝜌, 𝑡), 𝑛*(𝜌, 𝑡)).

As the result, the system (2.1) is solved with 𝑢*(𝜌(𝑡), 𝑡) and 𝑛*(𝜌(𝑡), 𝑡):

�̇�(𝑡) = −𝑖
[︀
𝐻𝑐*(𝜌(𝑡),𝑡), 𝜌(𝑡)

]︀
+ 𝜀ℒ𝐷𝑛*(𝜌(𝑡),𝑡)(𝜌(𝑡)), 𝜌(0) = 𝜌0. (3.9)

The r.h.s. in (3.9) is, in general, discontinuous in 𝜌 and 𝑡. As known
from the 𝑥- and 𝜓-procedures’s theory, solution of such a system can be
non-unique. The works [36, Sec. 2], [22, Sec. 6], [23, App. 2] for the problems
with scalar control and real-valued states explain, for the situation when
the switching function becomes zero, how to construct control via differen-
tiation of the equality of switching function to zero. Our case may include
𝒦𝑢(𝜒(𝑘)(𝑡), 𝜌(𝑡)) = 0, 𝒦𝑛1(𝜒(𝑘)(𝑡), 𝜌(𝑡)) = 0, and 𝒦𝑛2(𝜒(𝑘)(𝑡), 𝜌(𝑡)) = 0
whose differentiation gives the complicated expressions.

Define the sets Θ𝑢
1 := {𝑡 ∈ [0, 𝑇 ] : 𝑢(𝑘+1)(𝑡) ̸= 𝑢(𝑘)(𝑡)},

Θ
𝑛𝑗

1 := {𝑡 ∈ [0, 𝑇 ] : 𝑛
(𝑘+1)
𝑗 (𝑡) ̸= 𝑛

(𝑘)
𝑗 (𝑡)},

Θ𝑢
2,𝜌 := {𝑡 ∈ [0, 𝑇 ] : 𝒦𝑢(𝜒(𝑘)(𝑡), 𝜌(𝑘+1)(𝑡)) ̸= 0},

Θ
𝑛𝑗

2,𝜌 := {𝑡 ∈ [0, 𝑇 ] : 𝒦𝑛𝑗 (𝜒(𝑘)(𝑡), 𝜌(𝑘+1)(𝑡)) ̸= 0}, 𝑗 = 1, 2.
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Algorithm of the 𝜌-method (no regularization). 𝑘-th (𝑘 ≥ 0)
iteration (𝜌-procedure) consists of the following steps.

1) If 𝑘 = 0, then obtain 𝜌(0) from (2.1) and compute 𝐼(𝑐(0)); if 𝑘 > 0
then for the known 𝑐(𝑘) solve the adjoint system (3.3) to obtain 𝜒(𝑘).

2) Form the mappings (3.7), (3.8).
3) Solve the system (3.9) and construct the set of pairs {(𝑐, 𝜌)}, where

each pair consists of a solution 𝜌 of (3.9) and 𝑐(𝑡) = 𝑐*(𝜌(𝑡), 𝑡).
4) Select the pair (𝑐(𝑘+1), 𝜌(𝑘+1)) which provides maximal decrease of

𝐼(𝑐); if there is no decrease then select any (𝑐(𝑘+1), 𝜌(𝑘+1)).
5) If the stopping criterion |𝐼(𝑐(𝑘+1))−𝐼(𝑐(𝑘))| < 𝜖≪ 1 is not satisfied,

then set 𝑘 := 𝑘 + 1 and go to step 1); otherwise stop.

Algorithm of the 𝜒-method (no regularization). 𝑘-th (𝑘 ≥ 0)
iteration (𝜒-procedure) consists of the following steps.

1) If 𝑘 = 0, then obtain 𝜌(0) from (2.1) and compute 𝐼(𝑐(0)).
2) Form the mappings (3.10), (3.11).
3) Solve the system (3.12) and construct the set {(𝑐, 𝜒)}, where, for

each solution 𝜒 of (3.12), the corresponding control is 𝑐(𝑡) = 𝑐*(𝜒(𝑡), 𝑡);
construct the set of the corresponding pairs {(𝑐, 𝜌)} by solving (2.1).

4) Select the pair (𝑐(𝑘+1), 𝜌(𝑘+1)) which provides maximal decrease of
𝐼(𝑐); if there is no decrease then select any (𝑐(𝑘+1), 𝜌(𝑘+1)).

5) If the stopping criterion |𝐼(𝑐(𝑘+1))−𝐼(𝑐(𝑘))| < 𝜖≪ 1 is not satisfied,
then set 𝑘 := 𝑘 + 1 and go to the step 2); otherwise stop.

Proposition 1. The 𝜌-procedure provides a resulting control 𝑐(𝑘+1) such
that the first integrand in (3.4) for ̂︀𝛼 = 0, 𝑐(𝑡) = 𝑐(𝑘+1)(𝑡), 𝜌(𝑡) = 𝜌(𝑘+1)(𝑡),
𝑡 ∈ [0, 𝑇 ] is non-negative and 𝐼(𝑐(𝑘+1)) ≤ 𝐼(𝑐(𝑘)). The strong inequality
𝐼(𝑐(𝑘+1)) < 𝐼(𝑐(𝑘)) holds when at least one of the three sets Θ𝑢

1 ∩ Θ𝑢
2,𝜌,

Θ
𝑛𝑗

1 ∩Θ
𝑛𝑗

2,𝜌, 𝑗 = 1, 2 has non-zero measure.

Further, based on the second increment formula (3.6) for ̂︀𝛼 = 0, the
𝜒-method is formulated. Introduce the mappings

𝑢*(𝜒, 𝑡) = arg max
|𝑢|≤𝜇

(𝒦𝑢(𝜒, 𝜌(𝑘)(𝑡))𝑢), (3.10)

𝑛*𝑗 (𝜒, 𝑡) = arg max
𝑛𝑗∈[0,𝑛max]

(𝒦𝑛𝑗 (𝜒, 𝜌(𝑘)(𝑡))𝑛𝑗), 𝑗 = 1, 2. (3.11)

Form 𝑛*(𝜒, 𝑡) :=
(︀
𝑛*1(𝜒, 𝑡), 𝑛

*
2(𝜒, 𝑡)

)︀
and 𝑐*(𝜒, 𝑡) :=

(︀
𝑢*(𝜒, 𝑡), 𝑛*(𝜒, 𝑡)

)︀
.

Introduce the system (3.5) with 𝑢*(𝜒(𝑡), 𝑡) and 𝑛*(𝜒(𝑡), 𝑡):

�̇�(𝑡) = −𝑖
[︀
𝐻𝑐*(𝜒(𝑡),𝑡), 𝜒(𝑡)

]︀
− 𝜀ℒ𝐷,†𝑛*(𝜒(𝑡),𝑡)(𝜒(𝑡)), 𝜒(𝑇 ) = 𝜌target. (3.12)

Introduce the sets Θ𝑢
2,𝜒 := {𝑡 ∈ [0, 𝑇 ] : 𝒦𝑢(𝜒(𝑘+1)(𝑡), 𝜌(𝑘)(𝑡)) ̸= 0} and

Θ
𝑛𝑗

2,𝜒 := {𝑡 ∈ [0, 𝑇 ] : 𝒦𝑛𝑗 (𝜒(𝑘+1)(𝑡), 𝜌(𝑘)(𝑡)) ̸= 0}, 𝑗 = 1, 2.

Известия Иркутского государственного университета.
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Proposition 2. The 𝜒-procedure provides a resulting control 𝑐(𝑘+1) such
that the first integrand in (3.6) for ̂︀𝛼 = 0, 𝑐(𝑡) = 𝑐(𝑘+1)(𝑡), 𝜒(𝑡) = 𝜒(𝑘+1)(𝑡),
𝑡 ∈ [0, 𝑇 ] is non-negative and 𝐼(𝑐(𝑘+1)) ≤ 𝐼(𝑐(𝑘)). The strong inequality
𝐼(𝑐(𝑘+1)) < 𝐼(𝑐(𝑘)) holds when at least one of the three sets Θ𝑢

1 ∩ Θ𝑢
2,𝜒,

Θ
𝑛𝑗

1 ∩Θ
𝑛𝑗

2,𝜒, 𝑗 = 1, 2 has non-zero measure.

3.4. Regularized 𝜌- & 𝜒-methods. Gradient Projection Method

Based on the increment formulas (3.4) and (3.6) for ̂︀𝛼 = 1, we briefly de-
scribe the corresponding regularized 𝜌- and 𝜒-methods, which are called as
𝜌-method-reg(𝑠, 𝛼) and 𝜒-method-reg(𝑠, 𝛼). In view of [35, p. 61] and (3.4),
we construct the following mappings by deriving the stationary points of
the corresponding quadratic concave functions under (2.2):

𝑢𝛼(𝜌, 𝑡) = arg max
|𝑢|≤𝜇

(︁
𝒦𝑢(𝜒(𝑘)(𝑡), 𝜌)𝑢− 1

2𝛼
(𝑢− 𝑠𝑢(𝑘)(𝑡))2

)︁
=

=

⎧⎪⎨⎪⎩
−𝜇, 𝑢st(𝜌, 𝑡) < −𝜇,
𝜇, 𝑢st(𝜌, 𝑡) > 𝜇,

𝑢st(𝜌, 𝑡), |𝑢st(𝜌, 𝑡)| ≤ 𝜇,

where 𝑢st(𝜌, 𝑡) = 𝑠𝑢(𝑘)(𝑡) + 𝛼𝒦𝑢(𝜒(𝑘)(𝑡), 𝜌),

𝑛𝛼𝑗 (𝜌, 𝑡) = arg max
𝑛𝑗∈[0,𝑛max]

(︁
𝒦𝑛𝑗 (𝜒(𝑘)(𝑡), 𝜌)𝑛𝑗 −

1

2𝛼
(𝑛𝑗 − 𝑠𝑛(𝑘)𝑗 (𝑡))2

)︁
=

=

⎧⎪⎨⎪⎩
0, 𝑛st,𝑗(𝜌, 𝑡) < 0,

𝑛max, 𝑛st,𝑗(𝜌, 𝑡) > 𝑛max,

𝑛st,𝑗(𝜌, 𝑡), 𝑛st,𝑗(𝜌, 𝑡) ∈ [0, 𝑛max],

where 𝑛st,𝑗(𝜌, 𝑡) = 𝑠𝑛
(𝑘)
𝑗 (𝑡) + 𝛼𝒦𝑛𝑗 (𝜒(𝑘)(𝑡), 𝜌).

Consider 𝑐𝛼(𝜌, 𝑡) = (𝑐𝛼(𝜌, 𝑡), 𝑛𝛼𝑗 (𝜌, 𝑡), 𝑗 = 1, 2) and substitute it into (3.9)
instead of the mapping 𝑐*. Note that the r.h.s. of this system is continuous
in 𝜌 by construction. This gives the 𝜌-method-reg(𝑠, 𝛼).

Consider 𝜌-method-reg(𝑠, 𝛼) in the following projection form:

𝑐(𝑘+1)(𝑡) = 𝑐𝛼(𝜌(𝑘+1)(𝑡), 𝑡) = Pr𝑄
(︀
𝑠𝑐(𝑘)(𝑡) + 𝛼𝒦𝑐(𝜒(𝑘)(𝑡), 𝜌(𝑘+1)(𝑡))

)︀
(3.13)

where 𝑄 = [−𝜇, 𝜇] × [0, 𝑛max]
2 and Pr𝑄 is the orthogonal projection (in

‖ ·‖2) which maps any point outside of 𝑄 to a closest point in 𝑄, and leaves
unchanged points in 𝑄. The function 𝜌(𝑘+1) is the unique solution of (2.1),
where 𝑐𝛼 is taken instead of 𝑐.

Consider the function 𝑓(𝑢) := 𝒦𝑢(𝑢 − 𝑠𝑢(𝑘)(𝑡)) − 1
2𝛼(𝑢 − 𝑠𝑢

(𝑘)(𝑡))2. Its
value at the stationary point is 𝑓(𝑢𝑠𝑡) = 𝛼

2 (𝒦
𝑢)2 ≥ 0. We analyze the

cases 𝑢st > 𝜇 and 𝑢st < −𝜇 using zeros 𝑢0,1 = 𝑠𝑢(𝑘)(𝑡) ∈ [−𝜇, 𝜇] and
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𝑢0,2 = 𝑠𝑢(𝑘)(𝑡)+ 2𝛼𝒦𝑢 of 𝑓(𝑢). Omitting the details, the result is 𝑓(𝜇) ≥ 0
for 𝑢st > 𝜇 and 𝑓(−𝜇) ≥ 0 for 𝑢st < −𝜇. Similarly for 𝑛st,𝑗 , 𝑗 = 1, 2. Thus,
the increment (3.4) is ≤ 0 for 𝑐𝛼. Further, comparing (3.1) with (3.4) and
using the basic property ⟨𝑦−Pr𝑋(𝑦),Pr𝑋(𝑦)−𝑥⟩ ≥ 0 of projection ∀𝑦 ∈ R𝑛,
∀𝑥 ∈ 𝑋 ⊂ R𝑛, we obtain the following upper estimate (similar to (2.3) in [2])
for 𝑘-th iteration of 𝜌-method-reg(𝑠, 𝛼) (regularized 𝜌-procedure):

𝐼(𝑐(𝑘+1))− 𝐼(𝑐(𝑘)) = −
∫︁ 𝑇

0
⟨𝒦𝑐(𝜒(𝑘)(𝑡), 𝜌(𝑡)), 𝑐(𝑘+1)(𝑡)− 𝑠𝑐(𝑘)(𝑡)⟩𝑑𝑡 =

= − 1

𝛼

∫︁ 𝑇

0

[︁
⟨𝑐(𝑘+1)(𝑡)− 𝑠𝑐(𝑘)(𝑡), 𝑐(𝑘+1)(𝑡)− 𝑠𝑐(𝑘)(𝑡)⟩+

+ ⟨(𝑠𝑐(𝑘)(𝑡) + 𝛼𝒦𝑐(𝜒(𝑘)(𝑡))− 𝑐(𝑘+1)(𝑡), 𝑐(𝑘+1)(𝑡)− 𝑠𝑐(𝑘)(𝑡)⟩
]︁
𝑑𝑡 ≤

≤ − 1

𝛼

∫︁ 𝑇

0
‖𝑐(𝑘+1)(𝑡)− 𝑠𝑐(𝑘)(𝑡)‖22𝑑𝑡, 𝛼 > 0, 𝑐(𝑘+1)(𝑡) = 𝑐𝛼(𝜌(𝑘+1)(𝑡), 𝑡).

Taking into account the increment formula (3.6), we similarly construct
𝜒-method-reg(𝑠, 𝛼), where we consider the mapping

𝑐𝛼(𝜒, 𝑡) = (𝑐𝛼(𝜒, 𝑡), 𝑛𝛼𝑗 (𝜒, 𝑡), 𝑗 = 1, 2),

substitute it into (3.12) instead of 𝑐*.

Proposition 3. Each of the regularized 𝜌- and 𝜒- procedures for any
𝛼 > 0 gives such 𝑐(𝑘+1)(𝑡) = 𝑐𝛼(𝜌(𝑘+1)(𝑡), 𝑡) that 𝐼(𝑐(𝑘+1)) ≤ 𝐼(𝑐(𝑘)),
and if 𝑐(𝑘+1)(𝑡) ̸= 𝑐(𝑘)(𝑡) at a subset with non-zero measure on [0, 𝑇 ] then
𝐼(𝑐(𝑘+1)) < 𝐼(𝑐(𝑘)).

By analogy with [20, p. 239–240], for the increment (3.2) after differen-
tiating the functions 𝐺, 𝑅 one can obtain the gradient

grad 𝐼(𝑐(𝑘))(𝑡) = −𝒦𝑐(𝜒(𝑘)(𝑡), 𝜌(𝑘)(𝑡)), 𝑡 ∈ [0, 𝑇 ]. (3.14)

The same system (3.3) as in 𝜌-method-reg(𝑠, 𝛼) is used. For 𝑠 = 1, the for-
mula (3.13) reminds the following iterative formula of the one-step gradient
projection method (GPM-1) based on (3.14) (see also [35, p. 59]):

𝑐(𝑘+1)(𝑡) = Pr𝑄
(︀
𝑐(𝑘)(𝑡) + 𝛼(𝑘)𝒦𝑐(𝜒(𝑘)(𝑡), 𝜌(𝑘)(𝑡))

)︀
, 𝑡 ∈ [0, 𝑇 ], (3.15)

where 𝛼 can be not only fixed but also chosen as dependent on 𝑘. The dif-
ference between (3.13) and (3.15) is that GPM-1 uses only the background,
i.e. (𝑐(𝑘), 𝜌(𝑘), 𝜒(𝑘)), while 𝜌-method-reg(𝑠, 𝛼) uses both the background and
the constructed control via 𝑐𝛼.

Consider the following functional to be minimized:

𝐼𝛽(𝑐) = 1− 𝐽1(𝑐) +
∫︁ 𝑇

0
(𝛽1𝑢

2(𝑡) + 𝛽2(𝑛1(𝑡) + 𝑛2(𝑡)))𝑑𝑡, 𝛽1, 𝛽2 > 0.

Известия Иркутского государственного университета.
Серия «Математика». 2023. Т. 45. С. 3–23



KROTOV TYPE OPTIMIZATION ... 15

Its gradient is

grad 𝐼𝛽(𝑐(𝑘))(𝑡) =
(︁
−𝒦𝑢(𝜒(𝑘)(𝑡), 𝜌(𝑘)(𝑡)) + 2𝛽1𝑢

(𝑘)(𝑡),

−𝒦𝑛𝑗 (𝜒(𝑘)(𝑡), 𝜌(𝑘)(𝑡)) + 𝛽2, 𝑗 = 1, 2
)︁
. (3.16)

Using [1], [28, Sec. 5], we will consider in Subsec. 3.6 GPM-2 in the form

𝑐(𝑘+1)(𝑡) = Pr𝑄
[︀
𝑐(𝑘)(𝑡)− 𝛼(𝑘)grad 𝐼𝛽(𝑐(𝑘))(𝑡)+

+ 𝜃(𝑘)(𝑐(𝑘)(𝑡)− 𝑐(𝑘+1)(𝑡))
]︀
, 𝑡 ∈ [0, 𝑇 ], 𝜃(𝑘) ∈ (0, 1). (3.17)

3.5. PMP. Zero Controls

By analogy with [7, Ch. 4], — where, for the problem of maximizing
the same overlap with respect to the von Neumann equation with coherent
control, the corresponding formulation of the PMP in terms of density
matrices was done, — we, for our optimal control problem with (2.3) and
a fixed final time 𝑇 , formulate the corresponding PMP.

Proposition 4. (PMP). For the system (2.1), where coherent and inco-
herent controls are in the class of piecewise continuous controls satisfying
the constraints (2.2) for a fixed final time 𝑇 > 0, if some admissible
control ̂︀𝑐 = (̂︀𝑢, ̂︀𝑛1, ̂︀𝑛2) is a strict local maximum point of 𝐽1(𝑐) in the
problem of maximizing 𝐽1, then there exist solutions ̂︀𝜌 and ̂︀𝜒 of the sys-
tems (2.1), (3.3), where ̂︀𝑐 = (̂︀𝑢, ̂︀𝑛1, ̂︀𝑛2), such that the pointwise condi-
tion max

𝑐∈𝑄
ℎ(̂︀𝜒(𝑡), ̂︀𝜌(𝑡), 𝑐) = ℎ(̂︀𝜒(𝑡), ̂︀𝜌(𝑡),̂︀𝑐(𝑡)), 𝑡 ∈ [0, 𝑇 ] holds, where 𝑄 :=

[−𝜇, 𝜇]× [0, 𝑛max]
2. One has

max
|𝑢|≤𝜇

(𝒦𝑢(̂︀𝜒(𝑡), ̂︀𝜌(𝑡))𝑢) = 𝒦𝑢(̂︀𝜒(𝑡), ̂︀𝜌(𝑡))̂︀𝑢(𝑡), 𝑡 ∈ [0, 𝑇 ], (3.18)

max
𝑛𝑗∈[0,𝑛max]

(𝒦𝑛𝑗 (̂︀𝜒(𝑡), ̂︀𝜌(𝑡))𝑛𝑗) = 𝒦𝑛𝑗 (̂︀𝜒(𝑡), ̂︀𝜌(𝑡))̂︀𝑛𝑗(𝑡), 𝑡 ∈ [0, 𝑇 ]. (3.19)

Consider 𝜌0 = diag(𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝜌target = diag(𝑏1, 𝑏2, 𝑏3, 𝑏4) with

𝑎𝑗 , 𝑏𝑗 ≥ 0 (𝑗 = 1, 2, 3, 4),
∑︀4

𝑗=1 𝑎𝑗 = 1, and
∑︀4

𝑗=1 𝑏𝑗 = 1. One has

𝐽1(𝑐) =
∑︀4

𝑗=1 𝑑𝑗𝜌𝑗𝑗(𝑇 ). As in [28], we parameterize 𝜌 (using 𝑥𝑗 ∈ R,
𝑗 = 1, 16 for 𝜌𝑗𝑗 , 𝑗 = 1, 2, 3, 4 and Re𝜌𝑖𝑗 , Im𝜌𝑖𝑗 with 𝑖 < 𝑗, 𝑖, 𝑗 = 1, 2, 3, 4)
and 𝜒 (using 𝑦𝑗 ∈ R, 𝑗 = 1, 16) and obtain bilinear systems in terms
of 𝑥, 𝑦 which correspond to (2.1) and (3.3). In these terms, 𝒦𝑢(𝜒, 𝜌) =
⟨𝜒,−𝑖[𝑉, 𝜌]⟩ is realificated as 𝒦𝑢(𝑦, 𝑥) (via Wolfram Mathematica), but the
derived form is too complicated to present it here. For these 𝜌0 and 𝜌target,
for the realifications of (2.1) and (3.3) with 𝑐 = 𝑐 = 0 the corresponding
exact analytical solutions are obtained (via Wolfram Mathematica) for any
𝑉 including 𝑉1, 𝑉2 with any 𝑄1, 𝑄2 (since 𝐻𝑢(𝑡) = 𝑉 𝑢(𝑡) becomes zero
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for any 𝑡): 𝑥𝑖, 𝑦𝑖 have certain non-trivial forms if 𝑖 ∈ {1, 8, 13, 16}, and
𝑥𝑖 = 𝑦𝑖 = 0 if 𝑖 ∈ 1, 16 ∖ {1, 8, 13, 16}. 𝒦𝑢(𝑦, 𝑥) is a linear combination
of terms 𝑥𝑖𝑦𝑗 with 𝑖, 𝑗 = 1, 16, 𝑖 ̸= 𝑗 such that if 𝑖 ∈ {1, 8, 13, 16} then
𝑗 ̸∈ {1, 8, 13, 16}. Thus, substituting 𝑥𝑗(𝑡), 𝑦𝑗(𝑡) instead of 𝑥𝑗 , 𝑦𝑗 in 𝒦𝑢(𝑦, 𝑥)
gives 𝒦𝑢(𝑦(𝑡), 𝑥(𝑡)) ≡ 0 at the whole [0, 𝑇 ] for any admissible values of the
system’s parameters. The condition (3.18) is satisfied. We set 𝜌0 = 1

4 I4,
𝜌target = diag(1, 0, 0, 0) and obtain

𝒦𝑛1(𝑦(𝑡), 𝑥(𝑡)) = −𝑒−2𝜀(Ω1+Ω2)𝑇
(︀
𝑒2𝜀Ω1𝑡 − 1

)︀ (︀
2𝑒2𝜀Ω2𝑇 − 1

)︀
𝜀Ω1 ≤ 0,

𝒦𝑛2(𝑦(𝑡), 𝑥(𝑡)) = −𝑒−2𝜀(Ω1+Ω2)𝑇
(︀
𝑒2𝜀Ω2𝑡 − 1

)︀ (︀
2𝑒2𝜀Ω1𝑇 − 1

)︀
𝜀Ω2 ≤ 0,

where 𝜀,Ω1,Ω2 > 0. Using (2.2), we obtain that (3.19) is satisfied for
𝑗 = 1, 2. Thus, 𝑐 = 𝑐 = 0 satisfies the PMP for any admissible values of
the system’s parameters and 𝑇 . Similar result was obtained in [28].

3.6. Numerical Results

The Python programs for numerical simulations were written by the first
author using such tools as solve ivp from SciPy, etc. We consider (2.1)
with 𝑉 = 𝑉1, 𝜀 = 0.1, 𝜔1 = 1, 𝜔2 = Ω𝑗 = Λ𝑗 = 0.5 (𝑗 = 1, 2), 𝜌0 =

1
4 I4. Set

𝜇 = 50, 𝑛max = 10. Controls are interpolated as piecewise constant with
104 subintervals.

Case 1. Set 𝜌target = diag(1, 0, 0, 0) (pure quantum state), 𝑇 = 100 and
𝑉 = 𝑉1 with 𝜃1 = 𝜋/3, 𝜃2 = 𝜋/4, 𝜙1 = 𝜋/4, 𝜙2 = 𝜋/3. Analytically solving
(2.1) with 𝑐 = 0, we have 𝑏 − 𝐽1 ≈ 4.54 · 10−5 for any 𝑉 , where 𝑏 = 1 is
the overlap’s upper bound obtained [28] from ⟨𝜌, 𝜌target⟩ → max and is the
largest eigenvalue of 𝜌target. This gives a test optimal control problem.

Set the two initial guesses: 1) 𝑐(0) = (𝑢(0), 𝑛
(0)
1 , 𝑛

(0)
2 ) = (𝜇, 𝑛max, 𝑛max)

being the furthest from 𝑐 = 0 and giving 𝐼(𝑐(0)) ≈ 0.74; 2) 𝑢(0) = (0, 0, 1)
being not so far from 𝑐 = 0 and giving 𝐼(𝑐(0)) ≈ 0.33.

Set 𝑐(0) = (50, 10, 10). For the functional 𝐼𝛽, we use GPM-1, GPM-2

(3.17) with the gradient (3.16) (here is adapted for 𝐼𝛽). Take 𝛽1 = 0.01,
𝛽2 = 0.1. Fig. 1(a–d) show the following features of GPM and the dynamic
control landscape of 𝐼(𝑐):

1) we observe that up to about 80th iterations of GPM-1, 𝐼(𝑐(𝑘)) varies
from 0.734 to 0.689 and hence changes relatively slowly (the dashed line in
Fig. (a)) and the 𝐿2-norms of 𝒦𝑢(𝜒(𝑘), 𝜌(𝑘)), 𝒦𝑛𝑗 (𝜒(𝑘), 𝜌(𝑘)) (𝑗 = 1, 2) are

relatively small (Fig. (d)), but the 𝐿2-norms of 𝑢(𝑘), 𝑛
(𝑘)
𝑗 (𝑗 = 1, 2) change

significantly (Fig. (b));
2) after about 80th iterations of GPM-1 and up to 𝐼(𝑐(181)) ≈ 0.2, the

switching functions’ 𝐿2-norms become larger and 𝐼 decreases significantly;
3) after 𝐼(𝑐(181)) ≈ 0.2, GPM-1 becomes drastically worse (Fig. (a,d))

— now 𝛼(𝑘) = 1 is inappropriate and GPM-1 is stopped when 𝑘 = 250;
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Figure 1. For Case 1. Subplots (a)–(d) show behavior vs iteration number 𝑘 for
𝑐(0) = (50, 10, 10) for GPM-1 and GPM-2 of: (a) objective values; (b) 𝐿2 norms
of controls; (c) and (d) 𝐿2 norms of switching functions; (g) shows numbers of
the Cauchy problems solved in 𝜌-method-reg(𝑠 = 0, 𝛼), 𝜒-method-reg(𝑠 = 0, 𝛼)

for reaching 𝐼 ≤ 5× 10−5 with the different fixed 𝛼. Subplot (h) for
𝑐(0) = (0, 0, 1) shows numbers the Cauchy problems solved in GPM-1,

𝜌-method-reg(𝑠 = 1, 𝛼), and 𝜒-method-reg(𝑠 = 1, 𝛼) for reaching 𝐼 ≤ 5× 10−5,
where 𝛼 is either 104 or 105 and is the same during a run. Subplots (e) and (f)
show for both 𝑐(0) 𝜌𝑗,𝑗(𝑡) (𝑗 = 1, 4), 1− ⟨𝜌(𝑡), 𝜌target⟩, 𝑆(𝜌(𝑡)), and 𝑃 (𝜌(𝑡)) at the

numerically optimized 𝑐.

4) GPM-2 (initially 𝛼 = 1, 𝜃(𝑘) = 0.7, but 𝛼(𝑘) = 0.5, 𝜃(𝑘) = 0.85, if
𝐼 ≤ 0.1, and 𝛼(𝑘) = 0.3, 𝜃(𝑘) = 0.9, if 𝐼 ≤ 0.05) provides 𝑐 = 0 with good
precision and the stopping condition 𝐼 ≤ 5 · 10−5 (see the solid graph in
Fig. (a)) at the cost of 523 Cauchy problems;

5) 𝑐 = 0 satisfying the PMP is not a stationary point of 𝐼(𝑐) — in this
case, Fig. (c) shows that ‖𝒦𝑢‖𝐿2 becomes zero while ‖𝒦𝑛1‖𝐿2 and ‖𝒦𝑛2‖𝐿2

do not.
Fig. 1(f) shows the von Neumann entropy 𝑆(𝜌(𝑡)) = −Tr(𝜌(𝑡)) log(𝜌(𝑡))

and purity 𝑃 (𝜌(𝑡)) = Tr𝜌2(𝑡) vs 𝑡 at the whole [0, 𝑇 ]. Purification of
quantum states leads to 𝑃 (𝜌(𝑇 )) ≈ 1, 𝑆(𝜌(𝑇 )) ≈ 0, when 𝑇 = 100, 𝑐 = 0.

For the same 𝑐(0), Fig. 1(g) compares the numbers of the Cauchy prob-
lems for reaching 𝐼 ≤ 5× 10−5 when we use 𝜌-method-reg(𝑠 = 0, 𝛼(𝑘)) and
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𝜒-method-reg(𝑠 = 0, 𝛼(𝑘)) where 𝛼 ∈ {0.01, 0.05, 0.1, 0.5, 1, 2, 6} is the same
during a run. Both methods work sufficiently good, but the 𝜒-method is
faster than the 𝜌-method for the 2nd — 7th variants of 𝛼.

In contrast to 𝑐(0)=(𝜇, 𝑛max, 𝑛max) = (50, 10, 10), consider 𝑐(0)=(0, 0, 1),
because it is interesting to analyze how the methods work starting in some
proximity to 𝑐 = 0. At the cost of solving only 3 Cauchy problems, 𝜌-
method-reg(𝑠 = 0, 𝛼 = 1) provides the zero controls and 𝐼 ≤ 5×10−5. The
resulting 𝒦𝑢(𝑦(0)(𝑡), 𝑥(1)(𝑡)) ≡ 0, 𝒦𝑛𝑗 (𝑦(0)(𝑡), 𝑥(1)(𝑡)) ≤ 0, 𝑗 = 1, 2 at [0, 𝑇 ].
Also at the same cost, the problem is solved via 𝜒-method-reg(𝑠 = 0, 𝛼 = 1).
Further, 1000 iterations as of 𝜌-method-reg(𝑠 = 1, 𝛼 = 1) and of GPM-1
with the unchanged 𝛼 = 1 gives only 𝐼 ≈ 0.013.

Each of 𝜌-method-reg(𝑠 = 1, 𝛼), 𝜒-method-reg(𝑠 = 1, 𝛼), and GPM-
1, where 𝛼 is either 104 or 105 and is the same during a run, provides
𝐼 ≤ 5 × 10−5. Fig. 1(h) compares how many the Cauchy problems are
solved in each run of these methods with the two variants for fixing 𝛼. The
regularized 𝜒-method is essentially faster here.

Consider the 𝜌-method without regularization. Knowing that 𝑐 = 0
satisfies the PMP, we at the first iteration, — instead of differentiating the
switching functions for deriving 𝑢sing, etc., — try 𝑢sing = 0 in (3.7), 𝑛𝑗,sing =

0 in (3.8) and obtain that 𝒦𝑢(𝑦(0)(𝑡), 𝑥(1)(𝑡)) ≡ 0, 𝒦𝑛𝑗 (𝑦(0)(𝑡), 𝑥(1)(𝑡)) ≤ 0,
𝑡 ∈ [0, 𝑇 ], 𝑗 = 1, 2 and the condition given by Proposition 1 for 𝐼(𝑐(1)) <
𝐼(𝑐(0)) is realized.

Case 2. Set 𝐼(𝑐) = 𝑏 − 𝐽1(𝑐), 𝜌target = diag(0.7, 0.1, 0.1, 0.1), and
𝑇 = 70, where 𝑏 = 0.7 is the overlap’s upper bound obtained [28] as
the largest eigenvalue of the 𝜌target. If 𝑐 = 0, then 𝐼 ≈ 5.47 · 10−4

for any 𝑉 . Uniformly distributing {𝜆𝑗𝑚}50𝑚=1 on the unit sphere [34] for
𝜆1𝑚 = 𝜆2𝑚, the corresponding set of 𝑄1, 𝑄2 is obtained. For these 50
problems, use 𝜌-method-reg(𝑠 = 0, 𝛼 = 1), 𝑐(0) = (0.1, 1, 1). The condition
𝐼 ≤ 𝜀stop = 5.6·10−4 is reached for each problem, but numbers of the solved
Cauchy problems vary from 3 to 23.

4. Steering States and the Overlap: Numerical Results

Consider the system (2.1) and 𝐽2, 𝐽3 to be minimized (see (2.4), (2.5)).
Using the parameterized class of controls (2.6), (2.7) leads to the prob-
lems of minimizing the corresponding objective functions of 𝑇 and a =
(ℎ𝑢, 𝐴1, . . . , 𝐴𝐾 , 𝐵1, . . . , 𝐵𝐾 , 𝐶1, 𝐶2, ℎ𝑛1 , ℎ𝑛2). SciPy implementation of
the dual annealing method (DAM) is used. DAM realizes some zeroth-order
and stochastic approach for finite-dimensional global optimization. DAM
starts from some automatically generated point. In view of the stochastic
nature of DAM, we perform more than one trial for each problem.

Case 1. Consider the problem of minimizing 𝐽2(𝑐, 𝑇 ). Set 𝑉 = 𝑉1,
where 𝜃1 = 𝜃2 = 𝜋/2, 𝜙1 = 𝜙2 = 0 (as considered in [28]). Also set
𝜌0 = diag(1, 0, 0, 0) corresponding to 𝑥0 = (1,fifteen zeros) which is, as it
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was shown in [28], singular, equilibrium state for the system �̇�(𝑡) = 𝐴𝑥(𝑡),
i.e. for any 𝑇 the system’s trajectory cannot leave 𝑥0 without controls. Set
𝜌target = diag(0.1, 0.1, 0.3, 0.5). For (2.6), (2.7), consider 𝐾 = 3, 𝜈1 = 0.5,
𝜈2 = 1, 𝜈3 = 2, ℎ𝑢 ∈ [0, 2], |𝐴𝑗 | ≤ 10, |𝐵𝑗 | ≤ 10 (𝑗 = 1, 2, 3), 𝐶𝑗 ∈ [0, 5]
(𝑗 = 1, 2), ℎ𝑛𝑗 ∈ [0, 2] (𝑗 = 1, 2), 𝑇 ∈ [0.5, 2]. After 10 trials of DAM

applied to (2.4) with 𝑃 = 103, we stop with ‖𝜌(𝑇 ) − 𝜌target‖ ≈ 0.03 and
see that, at each of these trials, the computed controls 𝑢, 𝑛1, 𝑛2 are not
trivial. These 10 trials give such 𝑛1, 𝑛2 that the computed values of 𝐶1 in
(2.7) are from ≈ 0.08 to ≈ 2.09 and 𝐶2 in (2.7) are from ≈ 3.57 to 5 under
the constraints 𝐶𝑗 ∈ [0, 5], 𝑗 = 1, 2. Fig. 2 visualizes the result of some
trial, where the initial distance ‖𝜌(𝑇 )−𝜌target‖ ≈ 0.57, the largest occurred
value is near 1. The resulting value ‖𝜌(𝑇 ) − 𝜌target‖ ≈ 0.03 is much closer
to zero. Thus, using the class of controls (2.6), (2.7) and DAM is helpful.

Figure 2. Steering states to 𝜌target = diag(0.1, 0.1, 0.3, 0.5) with 𝑉 = 𝑉1. 10 trials
of DAM give non-trivial 𝑢, 𝑛1, 𝑛2. From a trial with ‖𝜌(𝑇 )− 𝜌target‖ ≈ 0.03:

(a) subsequence with monotonically decreasing values of ‖𝜌(𝑇 )− 𝜌target‖ during
the work of DAM; (b) the resulting 𝜌𝑗,𝑗 and ‖𝜌(𝑡)− 𝜌target‖ vs 𝑡.

For 𝑉 = 𝑉2 with the same other settings, the best result from 10 trials
of DAM also is ‖𝜌(𝑇 ) − 𝜌target‖ ≈ 0.03, and there are such the trials with
‖𝜌(𝑇 )− 𝜌target‖ ≈ 0.03 that either 𝑛1 is zero or not with non-trivial 𝑛2.

Case 2. Consider the problem of minimizing 𝐽3(𝑐, 𝑇 ). Set 𝑉 = 𝑉1,
where 𝜃1 = 𝜃2 = 𝜋/2, 𝜙1 = 𝜙2 = 0. For the same other settings, after 10
trials of DAM, the best result for |⟨𝜌(𝑇 ), 𝜌target⟩ −𝑀 | is zero. All these 10
trials give that 𝑛2 is zero with various precision.

5. Conclusions

This article considers two-qubit open quantum systems driven by co-
herent and incoherent controls, where the latter uses the environment as a
resource and induces time-dependent decoherence rates so that the system
evolves according to a GKSL master equation with time-dependent coeffi-
cients. For two types of interaction with coherent control, three types of
objectives are considered: maximizing the overlap ⟨𝜌(𝑇 ), 𝜌target⟩, minimiz-
ing ‖𝜌(𝑇 )− 𝜌target‖, and steering the overlap to a given value. For the first
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case we, based on [20; 35], etc., formulate in terms of density matrices the
Krotov type methods based on the nonlocal exact increment formulas with
or without regularization for piecewise continuous constrained controls, and
also give PMP and GPM, find the cases where the methods produce (either
exactly or with some precision) zero controls which satisfy the PMP and
produce objectives close to max

𝜌
⟨𝜌, 𝜌target⟩ so that the system’s free evolu-

tion itself achieves the goal. The Propositions 1–3 state that the Krotov
type procedures do not produce worse controls, and provide conditions
when the procedures give better controls. For the other problems, we use
a parameterized class of controls and find cases when the dual annealing
method steers objectives close to zero and produces non-zero control.

Comparing with the results beyond quantum control which are the basis
for us (e.g., [20;35;38]), we develop the nonlocal improvement methods with
or without regularization in terms of the GKSL master equation given in
Sec 2 and density matrices. The work [11] develops such the Krotov type
method in terms of the similar Markovian master equation and similar to
𝜌-method-reg(𝑠, 𝛼), but only with coherent control and regularization. The
difference from [13; 37] is that these works consider for the Schrödinger
(linear in 𝜓 and control) and Gross–Pitaevskii (not linear in 𝜓) equations
the corresponding Krotov type methods with regularization (with 𝑠 = 0 or
𝑠 = 1 in our terms). The works [20, § 6.5], [21] consider the Schrödinger
equation and the improvement methods with or without regularization
(with 𝑠 = 0 in our terms). Thus, we take into account and combine
various known ideas and constructions to reflect the specifics (density ma-
trices, two types of controls, two qubits, etc.) of the quantum problem
and to develop the methodology of the nonlocal improvement methods to
open quantum systems. Sec. 3.6 describes some interesting results of the
formulated methods. Various aspects of solving the appearing equations
whose r.h.s. are, in general, discontinuous in 𝜌, 𝜒, and convergence of
the methods should be carefully studied with numerical experiments in
subsequent works. Using the dual annealing method, in Sec. 4 non-trivial
incoherent controls were found for some objective functionals showing the
appearance of the environment as a useful resource.

This article was prepared following involvement of the authors in the
section “Quantum Control” of the International school-seminar “Nonlinear
Analysis and Extremal Problems” (Irkutsk, 15–22 July, 2022). Irkutsk is
known as a place where some Krotov type methods were developed.
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