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Аннотация. Рассматривается проблема нестабильности истинностных значений
формул. Исследуется временная модальная логика на предмет описания надёжности
информации. Логика сама по себе порождена стандартными моделями линейного
времени. Рассматриваются интервалы нестабильности истинности формул в этих
моделях. Это означает, что формула перманентно и в разумно большое время меняет
свою истинность с истины на ложь и наоборот. Создается специальная техника и
находится алгоритм, который позволит распознавать перманентную нестабильность
истинности формул.
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мул, разрешимость логики
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1. Introduction

Usage of modal, temporal and other non-classical logics has a long
and fruitful history. Origin of such many-valued logics may be dated to
Lukasiewicz (1917) and his three–valued and many–valued propositional
calculi, as well as to Goedel (1932), who refuted the finite — validness of
intuitionistic logic. Later A. Tarski (1951) and S. Kripke (1960th) sug-
gested semantical models for the studies of modal and temporal logics such
as topological boolean algebras and relational models (Kripke–Hintikka
models).

Conception of knowledge may be dated to the end of 1950. At 1962
Hintikka printed the manuscript: Knowledge and Belief, that was about
the first book-length work involving modalities to represent the semantics
of knowledge. That book contributed a good first addendum for the subject
area, but a great deal of research has taken place since that time. One of
logics in that line of research was temporal logic (cf. for historical outlook
for reasonably close days Gabbay, Hodkinson, Reynolds [2;3], Goldblat [4],
Goranko [5], van Benthem [16], Yde Venema [19]).

Among various extensions of temporal logic, the linear temporal logic
ℒ𝒯ℒ with operation U - until – introduced by Amir Pnueli – was especially
popular for applications and due to interesting mathematical base. Besides,
it is a good idea to mention automaton technique for solution satisfiability
in this logic developed by Vardi [17; 18]. From reasonably modern results
concerning this logic we would mention the solution for admissibility prob-
lem for ℒ𝒯ℒ in Rybakov [6; 7], the basis for admissible rules of ℒ𝒯ℒ was
obtained in Babenyshev and Rybakov [1]. The unification problem for ℒ𝒯ℒ
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was solved in [11]. Concerning applications of logical methods in AI and
CS, the tools around temporal logic work well for analysis in multi-agent
environment (cf. eg. [8; 9]).

Another popular direction in Information Sciences studies representa-
tion of knowledge via multi-agent environment using usually many agent
modal logics. That concerns diverse subjects of multi-agent environment
– interaction and autonomy, effects of cooperation etc. For example tools
for representation agents’ interaction for the logic ℒ𝒯ℒ of linear time were
developed in Rybakov [8; 9]. In current time this logic was investigated
from many viewpoints, in particular extensions of ℒ𝒯ℒ for the case of
non-transitive models, were studied in Rybakov [12; 15] for the case of the
interval versions of the logic. Also modelling multi-agent reasoning via
temporal models was applied in Rybakov [10; 13; 14] for the versions of
liner logic.

In this our short paper we consider reasonably new logical problem in
information sciences. We attempt to formalize what means that informa-
tion (presumably written by modal formulas) is not stable, permanently
not stable. We suggest in approach using Kripke-like linear models and
technique of realizers sets of formulas. The aim is to find an algorithm
which would recognize permanently nonstable formulas. The algorithm is
constructed and we prove that it solves the pointed task.

2. Satisfiability in Logic ℒ(ℳN)

Formulas of our logic ℒ(ℳN) will be defined as the set of special formu-
las, which are true at states of certain relational Kripke-like model.

Alphabet for the language of our logic ℒ(ℳN) is defined in a standard
way and consists of denumerable set of propositional letters (variables),
parenthesises, logical Boolean operations, and modal operations 2 and ♦
and also special time operation 𝑁𝑒𝑥𝑡 (unary operator << 𝑁𝑒𝑥𝑡𝑇 𝑖𝑚𝑒 >>).

We remind, that every modal operation 2 can be defined by means of
modal operation ♦ as follows 2 = ¬♦¬. Now we give inductive definition
of the formulas in the language of our logic ℒ(ℳN).

1) Any propositional variable 𝑝 ∈ 𝑃𝑟𝑜𝑝 is formula.

2) If 𝐴 is formula, then ¬𝐴 is formula also.

3) If 𝐴 and 𝐵 are formulas, then (𝐴 ∧ 𝐵), (𝐴 ∨ 𝐵) and (𝐴 → 𝐵) are
formulas as well.

4) If 𝐴 is formula, then 2𝐴 is a formula also.

5) If 𝐴 is formula, then 𝒩𝐴 is formula as well.
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There is no other formulas in the language of logic ℒ(ℳN). Now we turn
to the definition of our Kripke-like models. Let we have not empty set 𝑊 ,
binary relation 𝑅 on this set, 𝑅 ⊆ 𝑊 2, and the set 𝑃𝑟𝑜𝑝 of propositional
variables.

Relational model is a model:

ℳ = ⟨𝑊, 𝑅, 𝑉 ⟩,

where the valuation 𝑉 of any propositional variable 𝑝 from a fixed chosen
set of variables is defined as a some chosen subset 𝑉 (𝑝) from 𝑊 .

We will first consider models where 𝑊 is the set of all natural numbers
N. So, the relation 𝑁𝑒𝑥𝑡 is binary relation where 𝑎𝑁𝑒𝑥𝑡 𝑏 if and only if
𝑏 = 𝑎 + 1. It is convenient to write 𝑁𝑒𝑥𝑡(𝑎) = 𝑏. Now we precisely define
the truth value of formulas in arbitrary model ℳ as follows.

For any 𝑎, 𝑏, 𝑐 ∈ ℳ the truth relations are as follows, let 6 is the
standard linear order on N and

∀ 𝑝 ∈ 𝑃𝑟𝑜𝑝 : 𝑎 𝑉 𝑝 ⇐⇒ 𝑎 ∈ 𝑉 (𝑝),

𝑎 𝑉 ¬𝜙 ⇐⇒ 𝑎 1𝑉 𝜙,

𝑎 𝑉 (𝜙 ∧ 𝜓) ⇐⇒ 𝑎 𝑉 𝜙 and 𝑎 𝑉 𝜓,

𝑎 𝑉 𝒩 𝜙 ⇐⇒ ∀ 𝑏 [(𝑎𝑁𝑒𝑥𝑡 𝑏) ⇒ 𝑏 𝑉 𝜙] ,

𝑎 𝑉 2𝜙 ⇐⇒ ∀ 𝑏 [(𝑎 6 𝑏) ⇒ (𝑏 𝑉 𝜙)] ,

𝑎 𝑉 ♦𝜙 ⇐⇒ ∃ 𝑏 [(𝑎 6 𝑏) ∧ (𝑏 𝑉 𝜙)] .

So, in accordance with our notation, a linear relational model ℳN is a
model:

ℳN = ⟨N, 6, 𝑁𝑒𝑥𝑡, 𝑉 ⟩ .

The set of all formulas written in the language of model ℳN and which
are true in it, is called a logic, generated by model ℳN. Notice that this
definition differs from standard definition of logics, because the our one not
to be compulsory closed w.r.t. substitutions.

Formula 𝜙 is said to be satisfiable in the logic ℒ(ℳN), if there can be
find a state 𝑎 ∈ ℳN such as 𝑎 𝑉 𝜙. Formula 𝜙 is called not satisfiable in
the logic ℒ(ℳN), if there is no 𝑎 ∈ ℳN such as 𝑎 𝑉 𝜙. Formula 𝜙 is said
to be refutable in the logic ℒ(ℳN), if there exist a state 𝑎 ∈ ℳN such as
𝑎 1𝑉 𝜙. Respectively a formula 𝜙 is said to be true in the logic ℒ(ℳN) if
it is true at any state 𝑎 from ℳN. Recall that formula 𝜙 is a theorem of
the logic ℒ(ℳN) if and if only ¬𝜙 is not satisfiable formula in that logic.

Construction of the model ℳ1

We need now some axillary technique. Let us consider the formula

𝐴(𝛼) = 2♦𝜙(𝛼) ∧2♦𝜙(¬𝛼) , (1)
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where
𝜙(𝛼) =

(︁
𝛼 ∧𝑁(𝛼 ∧𝑁(𝛼 ∧ · · · ∧𝑁(𝛼)...))

)︁
,

𝜙(¬𝛼) =
(︁
¬𝛼 ∧𝑁(¬𝛼 ∧𝑁(¬𝛼 ∧ · · · ∧𝑁(¬𝛼)...))

)︁
.

Here every big parentheses contain exactly 𝑘 formulas 𝛼. In what follows,
always the formula 𝛼 does not contain temporal operation 𝒩 that is 𝛼
is pure modal formula (we will speak about permanent non-stability only
such formulas).

Let for some 𝑥 ∈ N formula 𝐴(𝛼) is true, so it is satisfiable in the state 𝑥.

Common picture representing this event, may be depicted like this:

. . . 𝑥 . . . [. . . 𝛼 . . . ] . . . [. . .¬𝛼 . . . ] . . . [. . . 𝛼 . . . ] . . .
Here every interval include exactly 𝑘 states where formula 𝛼 or ¬𝛼 to be
true.

Without loss of generality, keeping intuition, we can express such 𝛼-
intervals precisely in these sequences. If formula 𝐴(𝛼) is satisfiable in a
state of a modelℳN, then formula 𝛼 is called permanently unstable formula
(or information).

To solve the question of the satisfiability of formula 𝐴(𝛼) we need to
construct some finite models ℳ2 and show, that this formula is satisfiable
in some model ℳN if and only if it is satisfiable in some this model ℳ2

with effectively computable number of states.
At first we shell consider some auxiliary considerations. So, let we

assume that the formula 𝐴(𝛼) = 2♦𝜙(𝛼) ∧ 2♦𝜙(¬𝛼) is true at some sate
𝑏 from our model.

Lemma 1.

∀𝑏,∀𝑐,
(︁
(𝑐 > 𝑏) ⇒ ∃𝑆(𝑆 ⊆ 𝑆𝑢𝑏(𝛼)) ∧ ∀𝛽[(𝛽 ∈ 𝑆) ⇒ (𝑐 𝑉 𝛽)]∧

∧ ∀𝛽 ∈ 𝑆𝑢𝑏(𝛼)((𝑏 𝑉 𝛽) =⇒ (𝛽 ∈ 𝑆))
)︁
. (2)

Proof follows by simple direct evaluation of possible truth values of
formulas from 𝑆𝑢𝑏(𝛼).

The state 𝑏 is called the realiser of the subset 𝑆, and 𝑆 is realised in
the state 𝑏. Equivalence (2) does mean that for any given natural number
𝑏 only some realizers from some finite set of subsets 𝑆 of the set of all
sub-formulas from 𝑆𝑢𝑏 (𝐴(𝛼)) are accessible.

In ascending order from any 𝑏, the variety of subsets realizers 𝑆 decreases
and therefore there exists the state 𝑐 such that in all states 𝑦 > 𝑐 only
some subsets 𝑆 from the fixed finite set {𝑆1, 𝑆2, . . . , 𝑆𝑛} are exactly to be
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all possible realizers (starting from the state 𝑐) and these realizers to be
infinitely many times repeated in the future. That means that for any
𝑥 > 𝑐, for any 𝑆 ∈ {𝑆1, 𝑆2, . . . , 𝑆𝑛} there is some 𝑦 ≥ 𝑥 such that 𝑦 is
realizer for 𝑆. Also it is clear that 𝑆 as a realizer is unique. We need now
to construct certain intermediate modelℳ1 with some desirable properties.

Basic set of the new model 𝑀1 will begin from the state 𝑐0 > 𝑐, where
𝑐0 the earliest state after 𝑐 where formula 𝐴(𝛼) is true, that is 𝑐0 𝑉 𝐴(𝛼).

Then, in the basic set, we leave finite increasing set of all fixed states-
realizers for all sets from {𝑆1, 𝑆2, . . . , 𝑆𝑛} situated between first interval

𝐼𝑛𝑡1 := [. . . 𝛼 . . . ]

after 𝑐0 where 𝛼 is true and next interval

𝐼𝑛𝑡2 := [. . .¬𝛼 . . . ],

where ¬𝛼 is true; then we take the first interval

𝐼𝑛𝑡3 := [. . . 𝛼 . . . ]

after 𝐼𝑛𝑡2 = [. . .¬𝛼 . . . ] where 𝛼 is true; next we delete all other states
starting from 𝑐0 and direct the state 𝑥 the final one in 𝐼𝑛𝑡3 to the state 𝑧
which is next one in the obtained model after the final state 𝑤 in the interval
𝐼𝑛𝑡1. In the resulting model the relation 6 and valuation 𝑉 remain to be
as before. We can then observe now following picture:

. . . [𝑐0 . . . 𝛼 . . . ] . . . [. . .¬𝛼 . . . ] . . . [. . . 𝛼 . . . ] . . .

Lemma 2. For any natural number 𝑏 > 𝑐0, where 𝑏 ∈ ℳ1, and any
subformulas 𝛽 ∈ 𝑆𝑢𝑏(𝛼) the next statement holds:

(ℳN 𝑏) 𝑉 𝛽 ⇐⇒ (ℳ1, 𝑏), 𝑉 𝛽

Proof. The proof follows by induction on the length ℓ of subformulas
𝛽 ∈ 𝑆𝑢𝑏(𝛼).

1. ℓ = 0. For the propositional variables it is evident.
2. Let the statement is true for ∀ℓ < 𝑟. We shell prove for ℓ = 𝑟.
Inductive steps for the Boolean logical operations are evident. In the

case, when 𝛽 = ♦𝛾 or 𝛽 = 2𝛾, the inductive steps easy follow from the
presence of all possible realizers. Lemma is proved.

If a formula

𝐴(𝛼) = 2♦𝜙(𝛼) ∧2♦𝜙(¬𝛼)

is satisfiable in a model ℳ1, it is also satisfiable in some usual model (it
easy follows by standard unravelling technique).
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As we may see, the model ℳ1 has a finite size computable from the
length of the formulas

𝐴(𝛼) = 2♦𝜙(𝛼) ∧2♦𝜙(¬𝛼).

Therefore from Lemma 1 and Lemma 2 we obtain our main result:

Theorem 1. The problem of satisfiability formulas 𝐴(𝛼) is decidable
and therefore the problem of recognizing permanent unstable formulas is
solvable.

3. Conclusion

In this paper we considered problem of nonstable truth values of for-
mulas. We investigated temporal modal logic ℒ(ℳN) for description of
reliability information. The logic ℒ(ℳN) itself is generated by standard
model ℳN = ⟨N, 6, 𝑁𝑒𝑥𝑡, 𝑉 ⟩ on linear time. We considered intervals of
nonstable truth values of formulas, when formula permanently changes its
truth from true to false and vice versa. We constructed certain technique
and offered algorithm which may recognize permanently unstable formulas.
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