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investigated. We suppose that the composite bodies consist of an elastic matrix and one or
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as a control parameter, we formulate an optimal control problem with a cost functional
specified by an arbitrary continuous functional on the solution space. Assuming that the
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Научная статья

Задача об оптимальном расположении включений
для композитных тел с отдельными и соединенными
жесткими включениями
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Аннотация. Исследуются нелинейные математические модели, описывающие со-
стояние равновесия композитных тел, которые могут контактировать с неподвиж-
ным недеформируемым препятствием. Предполагается, что композитные тела со-
стоят из упругой матрицы и одного или двух встроенных объемных жестких вклю-
чений, эти включения имеют прямоугольную форму, при этом одно из них может
изменять свое расположение вдоль прямой линии. Рассматривая параметр располо-
жения как параметр управления, сформулирована задача оптимального управления
с функционалом качества, заданным произвольным непрерывным функционалом на
пространстве решений. В предположении, что параметр расположения изменяется
на заданном замкнутом интервале, доказывается разрешимость задачи оптималь-
ного управления. Кроме того, установлено, что задачу о равновесии композитного
тела с двумя соединенными включениями можно рассматривать как предельную
задачу для семейства задач о равновесии тел с двумя отдельными включениями.

Ключевые слова: задача оптимального управления, композитное тело, условия
Синьорини, жесткое включение, расположение
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1. Introduction

Clear advantages of using of composite parts in industry have increased
the need for high-precision mathematical models in order to design and
optimize in an efficient way composite structures. Along with tasks of
improving the physicochemical properties of the elements of composite
bodies, one of the important issues related to the creation of reinforced
composites is investigation of the best location and geometric shape of built-
in components. The direction of research related to nonlinear problems
describing deformation of elastic bodies with rigid or elastic inclusions is
an actual area of applied mathematics, see, for example, [8–14; 24–27].
Nonlinear model approach using well-known Signorini type boundary con-
ditions can be applied for contact problems [1; 15; 18; 21]. This approach
leads to variational problems with an unknown contact zone. Optimal
control of volume or Neumann forces in the framework of Signorini type
problems was studied, for example, in [2;23]. A classification of the different
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optimality systems of strong stationarity for the case of optimal control for
obstacle problems can be found in [5;28]. The researches on the shape and
topological sensitivity analysis of variational inequalities have been actively
elaborating [4;6;20;22]. A shape-topological control problem for nonlinear
crack - defect interaction was investigated in [16].

We study an optimal control problem for nonlinear mathematical models
describing an equilibrium state of composite bodies contacting with a fixed
non-deformable obstacle. We suppose that the composite bodies consist of
an elastic matrix and two built-in volume (bulk) rigid inclusions. These
inclusions have a rectangular shape and one of them can vary its location
along a straight line. For the optimal control problem under consideration,
a cost functional is specified by an arbitrary continuous functional defined
on the solution’s space, while the location parameter of one rigid inclusion
serves as a control. In [19] the solvability of optimal location problem for a
family of contact problems with finite number of inclusions was established.
Despite of the arbitrariness of the number of rigid inclusions, the solvability
of a relevant optimal control problem was established under the restriction
of a given nonzero distance between inclusions. In contrast to that result,
the current study deals with the case of arbitrarily close two inclusions.
Moreover, it should be noted that in the limit case, when the distance
between inclusions is equal to zero, we have one united rigid inclusion that
geometrically corresponds to the union of relevant sets. Assuming that
the location parameter varies in a closed interval, the solvability of the
optimal control problem is established. Furthermore, it is shown that the
equilibrium problem for the composite body with joined two inclusions can
be considered as a limiting problem for the family of equilibrium problems
for bodies with two separate inclusions.

2. Formulation of variational problems

Let Ω ⊂ IR2 be a bounded domain with boundary Γ ∈ 𝐶0,1, Γ = Γ0∪Γ𝑐,
meas(Γ0) > 0. We consider two square subdomains 𝜔, 𝜔𝑠 ⊂ Ω, 𝑠 ∈ [2, 𝑆],
𝑆 > 2, which are defined by the following relations:

𝜔 = (−1, 1)× (−1, 1),

𝜔𝑠 = {(𝑥1, 𝑥2) : 𝑥1 = 𝑦1 + 𝑠, 𝑥2 = 𝑦2, (𝑦1, 𝑦2) ∈ 𝜔}.

We suppose that both domains lie strictly inside in the domain Ω, i.e.

𝑑𝑖𝑠𝑡(𝜔, 𝜕Ω) > 0,

𝑑𝑖𝑠𝑡(𝜔𝑠, 𝜕Ω) > 0 for each 𝑠 ∈ [2, 𝑆].
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Remark 1. This assumption allows us to apply trace theorems and well-
known results concerning characterization of Sobolev spaces in Lipschitz
domains Ω ∖ 𝜔, Ω ∖ 𝜔𝑠.

Denote by 𝑊 = (𝑤1, 𝑤2) the displacement vector. Introduce the tensors
describing the deformation of an elastic part of the inhomogeneous body

𝜀11(𝑊 ) =
𝜕𝑤1

𝜕𝑥1
, 𝜀12(𝑊 ) = 𝜀21(𝑊 ) =

1

2

(︂
𝜕𝑤1

𝜕𝑥2
+
𝜕𝑤2

𝜕𝑥1

)︂
, 𝜀22(𝑊 ) =

𝜕𝑤2

𝜕𝑥2
.

𝜎𝑖𝑗(𝑊 ) = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙(𝑊 ), 𝑖, 𝑗 = 1, 2,

where 𝑐𝑖𝑗𝑘𝑙 is the given elasticity tensor, assumed to be symmetric and
positive definite:

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑘𝑙𝑖𝑗 = 𝑐𝑗𝑖𝑘𝑙, 𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑜𝑛𝑠𝑡,

𝑐𝑖𝑗𝑘𝑙𝜉𝑖𝑗𝜉𝑘𝑙 ≥ 𝑐0|𝜉|2, ∀𝜉, 𝜉𝑖𝑗 = 𝜉𝑗𝑖, 𝑖, 𝑗 = 1, 2, 𝑐0 = 𝑐𝑜𝑛𝑠𝑡, 𝑐0 > 0.

By the assumption concerning the domain Ω and the Korn’s inequality [7],
the following inequality holds∫︁

Ω

𝜎𝑖𝑗(𝑊 )𝜀𝑖𝑗(𝑊 )𝑑Ω ≥ 𝑐‖𝑊‖2𝐻(Ω), ∀𝑊 ∈ 𝐻(Ω), (2.1)

with a constant 𝑐 > 0 independent of 𝑊 .

Remark 2. The inequality 2.1 yields the equivalence of the standard
norm in 𝐻(Ω) and the semi-norm determined by the left-hand side of 2.1.

To formulate mathematical models for a composite body with volume
(bulk) rigid inclusions, we will use the notion of a rigid inclusion which
in general can occupy an arbitrary subdomain 𝒪 ⊂ Ω. In this case the
displacements on the domain 𝒪 should have a special structure 𝑊 |𝒪 = 𝜌,
where 𝜌 ∈ 𝑅(𝒪) and 𝑅(𝒪) is the space of infinitesimal rigid displacements
on 𝒪

𝑅(𝒪) = {𝜌 = (𝜌1, 𝜌2) | 𝜌(𝑥1, 𝑥2) = 𝑏(𝑥2,−𝑥1) + (𝑐1, 𝑐2);

𝑏, 𝑐1, 𝑐2 ∈ IR, (𝑥1, 𝑥2) ∈ 𝒪},
see, [13]. In the sequel we deal with two type of problems, the first describes
an equilibrium of a composite body with a single rigid inclusion prescribed
with the set 𝜔 ∪ 𝜔2, and the second one corresponds to a composite body
with two separate rigid inclusion prescribed with the sets 𝜔, 𝜔𝑠, 𝑠 ∈ (2, 𝑆].

For both types of problems, we have common conditions on the external
boundary Γ. We suppose that the body is fixed on the part Γ0 of the
boundary, i.e.

𝑊 = (0, 0) on Γ0. (2.2)
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According to the last condition, we deal with the following Sobolev spaces

𝐻1,0(Ω) = {𝑣 ∈ 𝐻1(Ω) | 𝑣 = 0 on Γ0}, 𝐻(Ω) = 𝐻1,0(Ω)2.

The Signorini condition of contact interaction is written as

𝑊𝜈 ≤ 0 on Γ𝑐,

where 𝜈 = (𝜈1, 𝜈2) is an outward normal to Γ. We introduce the energy
functional

Π(𝑊 ) =
1

2

∫︁
Ω

𝜎𝑖𝑗(𝑊 )𝜀𝑖𝑗(𝑊 )𝑑Ω−
∫︁
Ω

𝐹𝑊𝑑Ω, (2.3)

where 𝐹 = (𝑓1, 𝑓2) ∈ 𝐿2(Ω)2 is a given vector of exterior forces.
Now we formulate an equilibrium problem describing a contact of a com-

posite body with a single united rectangular inclusion which corresponds
to the set 𝜔+ = int(𝜔 ∪ 𝜔2). Furthermore the remaining part of the domain
Ω∖𝜔+ corresponds to the elastic matrix. It is required to

Find 𝑈2 ∈ 𝐾(2),

such that Π(𝑈2) = inf
𝑊∈𝐾(2)

Π(𝑊 ), (2.4)

where the set of admissible displacements is defined as follows

𝐾(2) = {𝑊 ∈ 𝐻(Ω) | 𝑊𝜈 ≤ 0 on Γ𝑐,

𝑊 |𝜔+ = 𝜌, where 𝜌 ∈ 𝑅(𝜔+)}.
It should be noted that, without loss of generality, due to properties of
functions 𝑊 ∈ 𝐻(Ω), we can require the relation 𝑊 ∈ 𝑅(𝜔 ∪ 𝜔2) instead
of 𝑊 ∈ 𝑅(𝜔+). The problem 2.4 has a unique solution 𝑈2 ∈ 𝐾(2), and can
be represented in the equivalent form of the variational inequality [3]∫︁

Ω

𝜎𝑖𝑗(𝑈2)𝜀𝑖𝑗(𝑊 − 𝑈2)𝑑Ω ≥
∫︁
Ω

𝐹 (𝑊 − 𝑈2)𝑑Ω, (2.5)

for all 𝑊 ∈ 𝐾(2).
Consider a family of equilibrium problems, where sets 𝜔, 𝜔𝑠 of rigid

inclusions are located at some distance from each other. Next, we fix the
coordinate parameter 𝑠 ∈ (2, 𝑆], which defines a location of the inclusion
domain 𝜔𝑠, while the set

Ω∖(𝜔 ∪ 𝜔𝑠),
corresponds to the elastic part of the body. An equilibrium problem of a
composite body with two separate rigid inclusions can be formulated as the
following minimization problem

Find 𝑈𝑠 ∈ 𝐾(𝑠),
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such that Π(𝑈𝑠) = inf
𝑊∈𝐾(𝑠)

Π(𝑊 ), (2.6)

where the set of admissible displacements is defined as follows

𝐾(𝑠) = {𝑊 ∈ 𝐻(Ω) | 𝑊𝜈 ≤ 0 on Γ𝑐,

𝑊 |𝜔 = 𝜌, 𝑊 |𝜔𝑠 = 𝜌𝑠, where 𝜌 ∈ 𝑅(𝜔), 𝜌𝑠 ∈ 𝑅(𝜔𝑠)}.

The problem 2.6 is known to have a unique solution 𝑈𝑠 ∈ 𝐾(𝑠), which
satisfies the variational inequality [3]∫︁

Ω

𝜎𝑖𝑗(𝑈𝑠)𝜀𝑖𝑗(𝑊 − 𝑈𝑠)𝑑Ω ≥
∫︁
Ω

𝐹 (𝑊 − 𝑈𝑠)𝑑Ω, (2.7)

for all 𝑊 ∈ 𝐾(𝑠).

3. Optimal control problem

Let’s define a cost functional 𝐽 : [2, 𝑆] → IR of an optimal control
problem with the use of the equality 𝐽𝐺(𝑠) = 𝐺(𝑈𝑠), where 𝑈2 is the
solution of the problem 2.4 for 𝑠 = 2 and 𝑈𝑠 represents the solution of the
problem 2.6 for 𝑠 ∈ (2, 𝑆], a functional 𝐺 : 𝐻(Ω) → IR satisfies continuity
property in 𝐻(Ω).

As examples of such functionals having physical sense, we can provide
the functional 𝐺1(𝑊 ) = ‖𝑊 − 𝑊0‖𝐻(Ω) characterizing the deviation of
the displacement vector from a given function 𝑊0. Consider the optimal
control problem:

Find 𝑠* ∈ [2, 𝑆] such that 𝐽𝐺(𝑠
*) = sup

𝑠∈[2,𝑆]
𝐽𝐺(𝑠). (3.1)

This means that we want to find the best location of one of the separate
two rigid inclusions or to reveal that the optimal configuration fits one
united single rigid inclusion which provides the maximal value for the cost
functional. The following is the main result of the paper.

Theorem 1. There exists a solution of the optimal control problem 3.1.

Proof. Let {𝑠𝑛} ⊂ [2, 𝑆] be a maximizing sequence. By the compactness
of the set [2, 𝑆] ⊂ IR, we can extract a convergent number subsequence of
real numbers {𝑠𝑛𝑘

} ⊂ {𝑠𝑛} such that

𝑠𝑛𝑘
→ 𝑠* as 𝑘 → ∞, 𝑠* ∈ [2, 𝑆].

Let us consider two possible different cases. The first case corresponds to
the inequality 𝑠* > 2, and the second one to the equality 𝑠* = 2. For
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the first case we can see that 𝑠𝑛𝑘
> 2 and 𝑑𝑖𝑠𝑡(𝜔, 𝜔𝑠𝑛𝑘

) > 𝛿 for some

𝛿 > 0 and for sufficiently large 𝑘. In this case of nonzero minimal distance
between rigid inclusions we can apply the results of the paper [19], where
the solvability of the problem 3.1 was established.

Now we consider the second case when 𝑠𝑛𝑘
→ 2 as 𝑘 → ∞. This

case models the passage to the limit when inclusions tend to each other
in order to get as a limit the single joined inclusion. Taking into account
Lemma 2 proved below, we have a convergence 𝑈𝑠𝑛𝑘

→ 𝑈2 strongly in 𝐻(Ω)
as 𝑘 → ∞. This allows us to obtain the convergence

𝐽𝐺(𝑠𝑛𝑘
) → 𝐽𝐺(2),

indicating that
𝐽𝐺(2) = sup

𝑠∈[2,𝑆]
𝐽𝐺(𝑠).

The theorem is proved.

4. Auxiliary lemmas

Now we have to justify some auxiliary lemmas which had to be used
within the proof of the above theorem. In establishing the proof, we
needed Lemma 2; however before proceeding further we need first prove
the following lemma.

Lemma 1. Let {𝑠𝑛} ⊂ [2, 𝑆] be a sequence of real numbers converging to
2 in IR as 𝑛→ ∞. Then for an arbitrary function 𝑊 ∈ 𝐾(2) there exist a
subsequence {𝑠𝑘} = {𝑠𝑛𝑘

} ⊂ {𝑠𝑛} and a sequence of functions {𝑊𝑘} such
that 𝑊𝑘 ∈ 𝐾(𝑠𝑘), 𝑘 ∈ IN and 𝑊𝑘 →𝑊 strongly in 𝐻(Ω) as 𝑘 → ∞.

Proof. We construct new subdomains �̂�𝑠 = (−1, 1+ 𝑠)× (−1, 1), 𝑠 ∈ (2, 𝑆].
One can note that 𝜔 and 𝜔𝑠 are subsets of �̂�𝑠. As the next step, we can
consider auxiliary problems related to �̂�𝑠

Find �̂�𝑠 ∈ �̂�(𝑠),

such that Π(�̂�𝑠) = inf
𝑊∈�̂�(𝑠)

Π(𝑊 ),

where the set of admissible displacements is defined as follows

�̂�(𝑠) = {𝑊 ∈ 𝐻(Ω) | 𝑊𝜈 ≤ 0 on Γ𝑐,

𝑊 |�̂�𝑠 = 𝜌, where 𝜌 ∈ 𝑅(�̂�𝑠)}.
For this kind of problems, in [17] was proved that there exists a sequence

of functions 𝑊𝑘 ∈ �̂�(𝑠𝑘) such that 𝑊 |�̂�𝑠𝑘
∈ 𝑅(�̂�𝑠𝑘) and 𝑊𝑘 →𝑊 strongly

in 𝐻(Ω) as 𝑘 → ∞. Since �̂�(𝑠𝑘) ⊂ 𝐾(𝑠𝑘), we obtain the assertion of the
lemma.



26 N.P. LAZAREV, G.M. SEMENOVA

Now, we are in a position to prove an auxiliary statement which was
used in the proof of the theorem.

Lemma 2. Let {𝑠𝑛} ⊂ [2, 𝑆] be a sequence of real numbers converging to
2 in IR as 𝑛 → ∞. Then 𝑈𝑠𝑛 → 𝑈2 strongly in 𝐻(Ω) as 𝑛 → ∞, where
𝑈𝑠𝑛, are the solutions of 2.6 corresponding to parameters 𝑠𝑛, and 𝑈2 is the
solution of 2.4.

Proof. We proceed by contradiction. Let us assume that there exist a
number 𝜖0 > 0 and a sequence {𝑠𝑛} ⊂ [2, 𝑆] such that 𝑠𝑛 → 2, ‖𝑈𝑠𝑛−𝑈2‖ ≥
𝜖0.

Because of 𝑊 0 ≡ (0, 0) ∈ 𝐾(𝑠𝑛) for all 𝑛 ∈ IN, we can insert 𝑊 = 𝑊 0

in 2.5 for fixed 𝑛 ∈ IN. This provides∫︁
Ω

𝜎𝑖𝑗(𝑈𝑠𝑛)𝜀𝑖𝑗(𝑈𝑠𝑛)𝑑Ω ≤
∫︁
Ω

𝐹𝑈𝑠𝑛𝑑Ω, ∀𝑛 ∈ IN.

From here, we conclude that for all 𝑛 ∈ IN the following uniform estimate
holds

‖𝑈𝑠𝑛‖𝐻(Ω) ≤ 𝑐

with some constant 𝑐 > 0 independent of 𝑛 ∈ IN. Consequently, replacing
𝑈𝑠𝑛 by its subsequence if necessary, we can assume that 𝑈𝑠𝑛 converges to
some function �̃� weakly in 𝐻(Ω).

Now we show that �̃� ∈ 𝐾(2). Indeed, we have

𝑈𝑠𝑛 |𝜔𝑠𝑛𝑘
= 𝜌𝑛 ∈ 𝑅(𝜔𝑠𝑛),

for all 𝑛 ∈ IN. Due to the Sobolev embedding theorem [11], we conclude
that

𝑈𝑠𝑛 |𝜔2 → �̃� |𝜔2 strongly in 𝐿2(𝜔2)
2 as 𝑛→ ∞, (4.1)

𝑈𝑠𝑛 |Γ → �̃� |Γ strongly in 𝐿2(Γ)
2 as 𝑛→ ∞. (4.2)

Choosing a subsequence, if necessary, we assume that 𝑈𝑠𝑛 → �̃� a.e. in 𝜔2

as 𝑛→ ∞.
In the next step we fix an arbitrary strictly inner subdomain𝐷 ⊂ 𝜔2. For

the sufficiently large numbers 𝑛 we have 𝐷 ⊂ 𝜔∩𝜔𝑠𝑛 and, as a consequence,
the sequence {𝜌𝑛} converges to �̃� a.e. on 𝐷 as 𝑛 tends to infinity. This
allows us to conclude that each of the numerical sequences {𝑏𝑛}, {𝑐𝑛1}, {𝑐𝑛𝑝},
defining the structure of functions 𝜌𝑛, 𝑛 = 1, 2, ... on 𝐷 is bounded in IR.
Thus, we can extract subsequences (retain notation) such that

𝑏𝑛 → 𝑏, 𝑐𝑛𝑖 → 𝑐𝑖, 𝑖 = 1, 2, as 𝑛→ ∞.

Therefore, we can choose a subsequence {𝑠𝑛𝑘
} such that

𝑈𝑠𝑛𝑘
→ (𝑏𝑥2 + 𝑐1,−𝑏𝑥1 + 𝑐2) a.e. in 𝐷 as 𝑘 → ∞. (4.3)
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Consequently, we obtain that

�̃� = (𝑏𝑥2 + 𝑐1,−𝑏𝑥1 + 𝑐2) a.e. in 𝐷.

Due to arbitrariness of the domain 𝐷 ⊂ 𝜔2, we infer that

�̃� = (𝑏𝑥2 + 𝑐1,−𝑏𝑥1 + 𝑐2) a.e. in 𝜔2.

On the other hand, we have for the fixed domain 𝜔 that

�̃� = (�̂�𝑥2 + 𝑐1,−�̂�𝑥1 + 𝑐2) in 𝜔.

Since �̃� ∈ 𝐻(Ω), then the jump of function �̃� on the intersection curve (the
common side of two closed squares) 𝜔 ∩ 𝜔2 is equal to zero. This means

that �̂� = 𝑏, 𝑐1 = 𝑐1, 𝑐2 = 𝑐2, and, therefore we have

�̃� = (𝑏𝑥2 + 𝑐1,−𝑏𝑥1 + 𝑐2) a.e. in 𝜔 ∪ 𝜔2,

i.e. �̃� ∈ 𝑅(𝜔 ∪ 𝜔2) holds.
We now show that �̃� satisfies the inequality �̃�𝜈 ≤ 0 on Γ1. Taking

into account the convergence 4.2, if necessary, we can once again extract a
subsequence satisfying 𝑈𝑠𝑛 |Γ → �̃� |Γ a.e. on Γ. Therefore, we can perform
the passage to the limit in the following inequality

𝑈𝑠𝑛𝜈 ≤ 0 on Γ𝑠.

This leads to �̃�𝜈 ≤ 0 on Γ𝑠. Thus, we reveal the inclusion �̃� ∈ 𝐾(2).
Our next goals are to prove the following equality �̃� = 𝑈2 and to

establish the existence of a sequence 𝑈𝑠𝑛 , 𝑛 = 1, 2... of solutions strongly
converging in 𝐻(Ω) to 𝑈2. Now, let us prove that �̃� = 𝑈2. For this purpose
we will analyze the variational inequality 2.5 and its limiting case. From
Lemma 1, for any 𝑊 ∈ 𝐾(2) there exist a subsequence {𝑠𝑛𝑘

} ⊂ {𝑠𝑛} and a
sequence of functions {𝑊𝑘} such that 𝑊𝑘 ∈ 𝐾(𝑠𝑛𝑘

) and 𝑊𝑘 →𝑊 strongly
in 𝐻(Ω) as 𝑘 → ∞.

The properties established above for the convergent sequences {𝑊𝑘} and
{𝑈𝑛} allow us to pass to the limit as 𝑘 → ∞ in following inequalities derived
from 2.5 for {𝑠𝑛𝑘

} and with the test functions 𝑊𝑘 ∈ 𝐾(𝑠𝑛𝑘
)∫︁

Ω

𝜎𝑖𝑗(𝑈𝑠𝑛𝑘
)𝜀𝑖𝑗(𝑊𝑠𝑛𝑘

− 𝑈𝑠𝑛𝑘
)𝑑Ω ≥

∫︁
Ω

𝐹 (𝑊𝑠𝑛𝑘
− 𝑈𝑠𝑛𝑘

)𝑑Ω. (4.4)

As a result, we have∫︁
Ω

𝜎𝑖𝑗(�̃�)𝜀𝑖𝑗(𝑊 − �̃�)𝑑Ω ≥
∫︁
Ω

𝐹 (𝑊 − �̃�)𝑑Ω ∀ 𝑊 ∈ 𝐾(2).

The unique solvability of this variational inequality ensures that �̃� = 𝑈2.
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To complete the proof, it is sufficient to establish the strong convergence
𝑈𝑠𝑛 → 𝑈2. By substituting 𝑊 = 2𝑈𝑠𝑛 and 𝑊 = (0, 0) into the variational
inequalities 2.5 for 𝑛 ∈ IN, we get∫︁

Ω

𝜎𝑖𝑗(𝑈𝑠𝑛)𝜀𝑖𝑗(𝑈𝑠𝑛)𝑑Ω =

∫︁
Ω

𝐹𝑈𝑠𝑛𝑑Ω ∀𝑛 ∈ IN. (4.5)

The equalities 4.5 together with the weak convergence 𝑈𝑠𝑛 → 𝑈2 in 𝐻(Ω)
as 𝑛→ ∞ imply

lim
𝑛→∞

∫︁
Ω

𝜎𝑖𝑗(𝑈𝑠𝑛)𝜀𝑖𝑗(𝑈𝑠𝑛)𝑑Ω = lim
𝑛→∞

∫︁
Ω

𝐹𝑈𝑠𝑛𝑑Ω =

∫︁
Ω

𝐹𝑈2𝑑Ω =

∫︁
Ω

𝜎𝑖𝑗(𝑈2)𝜀𝑖𝑗(𝑈2)𝑑Ω.

Since we have the equivalence of norms (see Remark 2), one can see that
𝑈𝑠𝑛 → 𝑈2 strongly in 𝐻(Ω) as 𝑛 → ∞. But this contradicts to the initial
assumption. The Lemma is proved.

5. Conclusion

Equilibrium problems for composite bodies which may come into contact
with a fixed non-deformable obstacle were investigated. The solvability of
the optimal control problem 3.1 is established. Also, it is shown that the
equilibrium problem for the composite body with joined two inclusions can
be considered as a limiting problem for the family of equilibrium problems
for bodies with two separate inclusions. Namely, the strong convergence
of the solutions 𝑈𝑠 of the family of problems 2.4 to the solution 𝑈2 of the
limiting problem 2.6 in the Sobolev space 𝐻(Ω) was established. As can
be seen from the proofs of the present paper, the main result remains true
in 3D case for rigid cubic inclusions, as well as for equilibrium problems
related to the two-dimensional solids with classical linear conditions.
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