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Abstract. We study analytical properties of the optimal income taxation model.
In this model we consider the maximization of wutility of an agent of the given type.
The real meaning of the utility is the net profit of the legal entity. The mathematical
consideration of the taxation optimization uses methods of probability theory, functional
analysis and optimal control. The totality of all agents in the economy is represented by
the probability space of their types. Optimal income taxation differs from commodity
taxation, another branch of the optimal tax theory. Actual taxes are commonly linear
or segmented, which naturally suggests us to consider such cases in this research. To
be more precise, we describe the general piecewise linear taxation model with increasing
linear coefficients. The latter is necessary for the tax function to be convex. An explicit
description of optimal functioning of agents depending on their types is obtained. In
particular, we consider optimal labour effort and optimal utility.
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AnHoTanms. PaccmarpuBaiorcst aHaIUTHYECKIE CBOWCTBA MOJIEIH ONTUMAJIBLHOIO HAJIO-
ro0o0JIO’KEHHS IPUOBbIA U MAKCUMU3BAINS NOAE3HOCMY CyObeKkTa Hajgoroobsoxenus. [Ipu
9TOM MCHOJIB3YIOTCSI METO/IBI TEOPUH BEPOSATHOCTEH, ONTHMAJIBHOIO YIIPABJIEHUS U DYHK-
[IMOHAJIbHBIA aHAIN3. YKa3bIBAETCsl, YTO COBOKYIIHOCTb BCEX CYOBEKTOB B IKOHOMHUKE
IIpeJICTaB/IeHa BEPOATHOCTHBIM IIPOCTPAHCTBOM UX THIIOB, MOJE/Ib ONITHMAJIBHOIO JOXO/a
OTJIMIAETCsI OT HAJOroo0sI0KeHnst ToBapoB. Vcciemyercs obiast KycouHO-INHeHAS MO-
JleJIb HAJIOrOOOJIOXKEHNsI C BO3PACTAIONUMY JIMHEHHbIMU Kodddunnentamu. [lociennee
yCJI0BHE HEOOXOIMMO, ITOOBI HAJIoroBast (PyHKINs ObLIa BBIMYKJIOH. B pesymbraTte mo-
JIy9IEHO sIBHOE OIIMCAHUE ONTHMAJIBLHOIO (PYyHKIMOHUPOBAHUS CYOBEKTOB B 3aBUCUMOCTH
OT WX THUIIOB. B 9aCTHOCTH, PACCMOTPEHBI ONTHUMAJbHBIE TPYL03aTPAThl ¥ OITUMAJIbHA
[I0JIE3HOCTb.

KuroyeBbie cijioBa: onTUMAJILHOE HAJIOTOODJIOKEHNE, OIITUMAJIbHBIN ITOM0X0IHBIA HAJIOT,
KYCOYHO-JIMHEHAsT ONTUMU3AIINS, MaTeMaTUIeCKas SKOHOMUKA

BaarogapHoctu: Pa6ora Beinonnena npu dbunancosoii nomuepxkke PH® (npoekr 22—
21-00566).

Ccouika agist murupoBanusi: Bogachev T. V. Optimal Behavior of Agents in a Piecewise
Linear Taxation Environment // sBectust IpKyTCKOro rocyIJapCTBEHHOTO YHUBEPCUATE-
ta. Cepust Maremaruka. 2022. T. 42. C. 17-26.
https://doi.org/10.26516/1997-7670.2022.42.17

1. Introduction

The impact of taxation on the economy has been considered in practice
only in a rather intuitive way. However, a lot of cases in finance, physics
and technology show that intuitive approaches to optimize a system could
provide you a result far from the real optimum. Specifically, situations
occur where adding an additional resource to the system leads to deteri-
oration of the overall performance (famous Braess’s paradox [5] or other
situations of that kind [6]).

This has motivated mathematical research on the optimization of taxa-
tion models. We will focus on the optimal income taxation theory, described
mainly by the Nobel prize winner J. A. Mirrlees ( [7], [8]). Another branch
of the optimal tax theory is the commodity taxation (see [2]). The consid-
eration of this problem was motivated by our discussions with A. Tsyvinski,
in particular on the papers [10] and [9]. In the paper [3] some results were
obtained for a general case with several smooth conditions.

Actual taxes are commonly linear or segmented, which naturally sug-
gests us to consider such cases. To be more precise, we describe the general
piecewise linear taxation model with increasing linear coefficients. The
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OPTIMAL BEHAVIOR OF AGENTS 19

latter is necessary for the tax function to be convex. Note that this research
is different from the one given in [1]. In that article the model is a bit
different, and a 2-step case is considered thoroughly, including concave tax
functions. However, for the general piecewise linear case only numerical
results are obtained in a discrete model. In this paper we obtain some
general analytical results about the behavior of the system in a generalized
model.

2. Problem statement

We denote by 6 € © C R’} a productivity type of a given agent, by I € R
its labour effort. There is the probability measure H on ©, which defines
the distribution of agents among the types. As a result of the scalar product
we have the income y = (6, () and the utility U(0,1) = y—T (y) —v(l), where
T'(y) is the tax liability of the income y, defined by the government, and v (1)
is a twice continuously differentiable, increasing, strictly convex dis-utility
function of labour effort. Common sense induces that T'(y) and y — T'(y)
are increasing non-negative continuous functions. Usually we also assume
T to be convex, which makes sense as it is supposed to be growing faster
for greater incomes. For a given type 6 and a fixed tax function T we solve
the optimization problem

max U(0,l) =max ((6,1) —T(0,1) —v(l)). (2.1)

IERT

Having found the points of maxima l,,4, for each 6 and, henceforth, 4,4, =
(0, lymaz ), we define the government revenue as

R(T) = /@ T (Yomaa (0))H. (2.2)

By analogy, the overall utility in the economy can be defined as

/ U(0, lymaz(0))dH.
e

In this paper we consider v(l) = %, which is equivalent to v(l) = ¢||l|?

for each ¢ > 0, as it will be shown later. The main aim of this study
is to describe lmez(0), Ymaz(f) and the resulting utility of the “optimal”
behavior.

2.1. DIMENSIONALITY REDUCTION

Suppose that vectors # and [ are non-collinear. Take the projection I’
of [ onto 6. Then (0,I') = (6,1), while v(I') > v(l). This implies that
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we should always consider only collinear vectors [ and 6, which gives us
(1,0) = ||| ||0||- Hence, we could consider positive numbers § and [ instead
of vectors and the usual multiplication of numbers instead of the scalar
product.

2.2. PIECEWISE LINEAR MODEL

We consider a tax function represented by N linear segments. The seg-
ments are described by partition points my < ... < my_1 and coefficients
k1 <...<kp, so that

kiy ity <m

kymy + ka(y —my) if myp <y <mgy
T(y)={.

kymi + ka(mo —my) + ...+ kn(y —my—1) if my_1 <uy.
(2.3)

3. Results

Recall that for each 6 the solution to the optimization problem 2.1 is the
optimal labour effort l,,4,(0), which optimizes the utility. Then we have
the optimal income Ymar = Olmaz(0) and the optimal utility U, (6) =
U(0, lmaz(0)).

Theorem 1. The optimal income Ypmaq:(0) is increasing with respect to 6.
The proof is given in Section 4.2.

Theorem 2. In the piecewise linear case (2.3), the optimal income Yumaz ()
is piecewise constant. To be more precise, [0,400) is divided into consecu-
tive intervals Iy, ..., Iant+1 and Ymae S constant on the intervals with odd
numbers and strictly increasing on the ones with even numbers.

Corollary 1. The conclusions of Theorem 2 are also valid for the resulting
tax T(Ymaz(0)).

Remark 1. Note that the rate of increase of the optimal income is
diminishing from segment to segment. The same is in general not true

for T(ymax(0))-

Theorem 2 is proved in section 5.2.

WsBectus UpkyTcKoro rocy1apCTBEHHOTO YHUBEPCUTETA.
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4. General case

First of all, let us note that we speak about the individual income y
without giving any special constraints. However, there are some, especially
i 2
if we take v(l) = &

1(20 — 1)

U, ===,

—T(61), which implies that [ < 26, because U > 0.

Hence y < 26%. Moreover, it can be easily shown that 4. (0) < 6:

62 €2
U(@,@—l—E):92+96—T(92+96)—5—96—§
9> ¢ 6>

T~ L0 +0c) < ~T(6°) =U(0,0).

Therefore, we have Y. () < 62 for each 6.

4.1. CURRENCY CONVERSION
Now we will convert our currency into another one with the coefficient c:

Ynew = CY
Tnew (ynew) = CT(y)

Unew (lnew) = cv(1).

To be more precise, ¢ = cycy, so that l,e, = ¢l and O, = cgf. We can
see that

&
Unew enew, lnew = lnew enew - lnewi - Tnewv
( )=t )

and the first term on the right is positive if and only if [ < 26. As a result,

it is now proved that if we have some solutions for some v and O, then we

can transform the entire system into another one, where v(l) = %

4.2. OPTIMAL INCOME PROPERTIES

Consider 1 = 3 — §, where § > 0 and I; = l;a2(0;), y; = 1;0;. Then

2 2
U(HQ, ll) = 0501 — T(agll) — 51 = 11(91 + (S) — T(l1(01 + 5)) — 51

= U(Hl,ll) + 116 — AT > U(@l,ll),
because we know that y — T'(y) is an increasing function. Thus,

U(Hg,lg) > U(Qg,ll) > U(@l,ll) (4.1)
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Moreover, by the definition of 1,

2 2
yl—T(yl)—ng% >y—T(y)—2ya% Yy < 1. (4.2)
If we look at 2 2
d(y) = 279% - 270%7

we notice that this function is increasing, so we can add d(y;) to the left
part of (4.2) and d(y) to the right part. Therefore,

y3 y?
—T(y) — 2o sy —T(y) — L=V . 4.3
y1— T (y1) 202 >y —T(y) 20 y < (4.3)

Hence, given (4.1), we have y; < y2. Theorem 1 is proved.

5. Piecewise linear case

5.1. SIMPLE OBSERVATIONS

We will first assume that

kiy ity <m
T(y) = :
kim + ka(y —m) otherwise,

where 0 < k1 < ko < 1, and m > 0 is some given point on the incomes
scale.

(A) 1 <m/6:
Here U(0,1) = Ui(l) = —3> +1(0 — k16). Argmax is, obviously, l; =
O(1 — k1). But we need to check first whether [y is inside boundaries for
this case. That is equivalent to the following condition:

m
9% <

_ 2
<iop = (5.1)

where the maximum value is

62(1 — kyp)?

M, =Ui(lh) = 5

which we will note and later return to.

(B) I >m/0:
In this case U(6,1) = Us(l) = —5124+1(0—k20)+m(ka—k1). It is maximized
at lo = 6(1 — k), and, by analogy with the previous case

m

62 > = 03 5.2

T 11—k 2 ( )
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where the maximum value is
02(1 — ky)?
2

Remark 2. Let us compare these two obtained values by analyzing their
difference My — Ms:

MQ = Ug(lg) = -+ m(kﬁg — ]{:1).

92
5((1 k(1 k2)2) ok — ko)
92
= E(kg — kl)(2 — k1 — kg) —|—m(k:1 — kz) >0
2 2m m
72_ - 2 = :* .
= 2( k1 k2)>m<:>0>2_k1_k2 - 0%, (5.3)

where k* is the arithmetic mean of the coefficients.

It should be noted, however, that there seems to be a contradiction
between conditions (5.3) and (5.1) + (5.2). Indeed, 62 < §* < 03, and for
6 < 61 we have the first mode of tax liability (5.1), so Uz = M;. But
at the same time M; < My, because #? < #*. An explanation lies in the
behavior of M; as a function of 8: M; grows faster than Ms and its value
becomes greater once the condition (5.3) is met. Also, it is very important
to note that I1 > lo.

In other words, every 6 generates two parabolic curves Uj(l) and Us({)
the maximum points of which we have just compared. Their crossing is

I =m/0, so the final U(l) is U1|i<m/0 U U2li>m/6-
5.2. THE BEHAVIOR ANALYSIS

Now assume that the tax function has N pieces described by coefficients
k1 < ... < ky and partition points m; < ... < my_1, as it was defined
in 2.3. Each point m; produces two boundary values, as was shown in (5.1).
We denote them by

my [ m;
1,1 = sy Ui . 4
0 1 1—k; 0 2 1-— ki+1 (5 )

For a given @, the linear segment corresponding to the coefficient k;,
generates a curve

1
Ui(l) = — §l2 H0(1 = ki) + Y mj(kj — ky), (5.5)
7<t
with the argmax I; = 6(1 — k;), and we switch from U; to U;y; once we
approach | = m;/6.
Given all that it is now possible to describe the behavior of 1,4, (0) and
Unnaz(0).
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Lemma 1. In the given environment the dependence of the optimal solu-
tion on 6 is as follows:

1) 0 < 91,1.
This means that lo < 1y < my/0. In this case Uy and Uz look as shown
on Fig.1(a). Obviously, lymaesz =11 = 0(1 —k1). A generalization of this
case s to be found further.

2) 9171 <fh< 92',2.
Here i1 <m;/0 <l and U is maximized at | = m;/6 (Figures 1(b),
1(d)) . Therefore, Ymaz = 0l = m; is constant on this interval. So,

lmaz(0) =m; /6
ymax(e) =my;
T,

max(e) =kimi+...+ kl(ml — mi,l) (5.6)
2
m;
max =——1 i Tmar
Unaa(0) = — 525 +m

3) 0i2 <0 <6111 (Figure 1(c)). Which is m;/0 < liy1 <l;. Thus,

lmaz(0) = liz1 = 0(1 — kiq1),
ymax(e) = 92(1 - k;’i+l)7
Tma:r;(e) - ki—i—l(l - ki+1)92+

+kimi+...+ kz(mz — mi_l) — kipimy, (57)
1 —kip1)?
Upaz(0) = 92(2“)_

— (krmi+ ...+ ki(my —mi—1) — kipimy) .

This covers the first case, once we take i = 0, 6po = 0. Also, when
i =N — 1, we have a particular case described below.

4) On—12 < 0. This is a particular situation of the case above, with
OnNg = 00. lmaz =In =01 —kn). (Figure 1(e)).

Note that all boundaries on 0 are actually not strict, as the functions remain
continuous.

Theorem 2 follows immediately from Lemma 1.

5.3. PICTURES

Pictures on Fig. 1 detail the case of three tax coefficients. Fig. 1(f)
illustrates how the optimal labour [ depends on the productivity type 6.
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Figure 1. 3 tax coefficients

6. Conclusion

As a result, explicit formula is obtained for the optimal income for each
type of agent and, thus, also explicit formulas for the government revenue
(2.2) and the overall utility in the economy. Maximization of those is an
open problem usually being of a particular interest for application purposes.



26 T.V.BOGACHEV

It would be interesting to investigate possible connections of the considered
problems with nonlinear Kantorovich problems of optimal transportation
(see, e.g., [4] and the references therein).
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