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Abstract. In this paper, we consider a convex function defined as a 1D-regularized total
variation with nonhomogeneous coefficients, and prove the Main Theorem concerned with
the decomposition of the subdifferential of this convex function to a weighted singular
diffusion and a linear regular diffusion. The Main Theorem will be to enhance the
previous regularity result for quasilinear equation with singularity, and moreover, it will
be to provide some useful information in the advanced mathematical studies of grain
boundary motion, based on KWC type energy.
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1. Introduction

Let Ω := (−𝐿,𝐿) ⊂ R be a one-dimensional spatial domain with a
constant 0 < 𝐿 < ∞, and let us define 𝐻 := 𝐿2(Ω) and 𝑉 := 𝐻1(Ω). Let
0 ≤ 𝛼 ∈ 𝑉 and 0 < 𝛽 ∈ 𝑉 be fixed functions.

In this paper, we consider the following convex function on 𝐻:

𝜃 ∈ 𝐻 ↦→ Φ𝛼,𝛽(𝜃) := 𝑉𝛼(𝜃) +𝑊𝛽(𝜃); (1.1)

which is defined as a sum of two convex functions on 𝐻, defined as follows:

𝜃 ∈ 𝐻 ↦→ 𝑉𝛼(𝜃) := sup

{︂ ∫︁
Ω
𝜃𝜕𝑥𝜙𝑑𝑥,

𝜙 ∈ 𝑉 ∩ 𝐶c(Ω), such
that |𝜙| ≤ 𝛼 on Ω

}︂
, (1.2)



70 S.KUBOTA

and

𝜃 ∈ 𝐻 ↦→𝑊𝛽(𝜃) :=

⎧⎨⎩
1

2

∫︁
Ω
𝛽|𝜕𝑥𝜃|2𝑑𝑥, if 𝜃 ∈ 𝑉,

∞, otherwise.
(1.3)

The functional 𝑉𝛼, defined in (1.2), is a kind of generalized total variation,
so that the functional Φ𝛼,𝛽, defined in (1.1), can be called a regularized
total variation with nonhomogeneous coefficients 𝛼 and 𝛽.

On this basis, we set the goal to prove the following Main Theorem.

Main Theorem (Decomposition of the subdifferential). The subdiffer-
ential 𝜕Φ𝛼,𝛽 ⊂ 𝐻 × 𝐻 of the convex function Φ𝛼,𝛽 is decomposed as
follows:

𝜕Φ𝛼,𝛽 = 𝜕𝑉𝛼 + 𝜕𝑊𝛽 in 𝐻 ×𝐻, (1.4)

i.e. 𝜕Φ𝛼,𝛽 is represented as the sum the subdifferentials 𝜕𝑉𝛼 ⊂ 𝐻 ×𝐻 and
𝜕𝑊𝛽 ⊂ 𝐻 ×𝐻 of the respective convex functions 𝑉𝛼 and 𝑊𝛽.

The equation (1.4) leads to the 𝐻2-regularity of the following nonhomo-
geneous quasilinear equation with singularity:⎧⎨⎩−𝜕𝑥

(︂
𝛼(𝑥)

𝐷𝜃

|𝐷𝜃|
+ 𝛽(𝑥)𝜕𝑥𝜃

)︂
= 𝜃* with 𝜃* ∈ 𝐻,

subject to the zero-Neumann type boundary condition.

(1.5)

When the both 𝛼 and 𝛽 are homogeneous (constants), we can obtain the
𝐻2-regularity by using the mathematical method, developed in [12], which
is based on the general theory of PDEs (e.g. [10]). However, when 𝛼 and
𝛽 are nonhomogeneous, the extra error terms brought by 𝛼 and 𝛽 make
it difficult to see 𝜃 ∈ 𝐻2(Ω) in (1.5), by referring to the existing method.
Hence, it can be said that our Main Theorem will be to enhance the previous
method of [12], and moreover, to report another variational approach based
on the subdifferential.

In the meantime, the Main Theorem is motivated by the mathematical
analysis of grain boundary motion, studied in [13; 14], and especially, the
convex function Φ𝛼,𝛽 is based on the KWC energy, proposed by Kobayashi–
Warren–Carter [9]. In this context, the variable 𝜃 is the order parameter of
crystalline orientation, and the nonhomogeneous coefficients 𝛼 and 𝛽 are
associated with another order parameter, such as the orientation order of
grain in a polycrystal. In this light, our Main Theorem can be expected
to provide useful information for some advanced problems that require
smoothness of the system while including singularity, such as the optimal
control problem governed by the KWC type model.

Известия Иркутского государственного университета.
Серия «Математика». 2021. Т. 36. С. 69–83



SUBDIFFERENTIAL DECOMPOSITION OF 71

The proof of Main Theorem is divided in three Sections. In the next
Section 2, we prepare notations and mathematical theories as the prelimi-
naries. Additionally, in Section 3, we prove an auxiliary lemma associated
with the approximating approach to the Main Theorem. Based on these,
the final Section 4 is devoted to the proof of our Main Theorem.

2. Preliminaries

We begin by prescribing the assumptions and notations used throughout
this paper.

Assumptions. Throughout this paper, let Ω := (−𝐿,𝐿) ⊂ R be a fixed
spatial bounded domain with a constant 0 < 𝐿 < ∞, and let Γ := 𝜕Ω =
{−𝐿,𝐿} be the boundary of Ω. Also, let 𝜕𝑥 be the distributional spatial
differential. On this basis, we define

𝐻 := 𝐿2(Ω), 𝐻Γ :=
{︀
𝑧 𝑧 : Γ −→ R

}︀
(∼ R2), and 𝑉 := 𝐻1(Ω) (⊂ 𝐶(Ω)).

Let 𝛼 ∈ 𝑉 and 𝛽 ∈ 𝑉 be fixed functions, such that:

min𝛼(Ω) ≥ 0, and min𝛽(Ω) > 0. (2.1)

Abstract notations. For an abstract Banach space 𝑋, we denote by | · |𝑋
the norm of 𝑋. Let 𝐼𝑋 : 𝑋 −→ 𝑋 be the identity map from 𝑋 onto 𝑋.
In particular, when 𝑋 is a Hilbert space, we denote by (·, ·)𝑋 the inner
product of 𝑋.

For any subset 𝐴 of a Banach space 𝑋, let 𝜒𝐴 : 𝑋 −→ {0, 1} be the
characteristic function of 𝐴, i.e.:

𝜒𝐴 : 𝑤 ∈ 𝑋 ↦→ 𝜒𝐴(𝑤) :=

{︃
1, if 𝑤 ∈ 𝐴,

0, otherwise.

Notations in convex analysis. (cf. [5, Chapter II]) Let 𝑋 be an

abstract Hilbert space 𝑋. For a proper, lower semi-continuous (l.s.c.), and
convex function Ψ : 𝑋 −→ (−∞,∞] on a Hilbert space 𝑋, we denote by
𝐷(Ψ) the effective domain of Ψ. Also, we denote by 𝜕Ψ the subdifferential
of Ψ. The subdifferential 𝜕Ψ corresponds to a weak differential of convex
function Ψ, and it is known as a maximal monotone graph in the product
space 𝑋×𝑋. The set 𝐷(𝜕Ψ) :=

{︀
𝑧 ∈ 𝑋 | 𝜕Ψ(𝑧) ̸= ∅

}︀
is called the domain

of 𝜕Ψ. We often use the notation “[𝑧0, 𝑧
*
0 ] ∈ 𝜕Ψ in 𝑋 ×𝑋 ”, to mean that

“𝑧*0 ∈ 𝜕Ψ(𝑧0) in 𝑋 for 𝑧0 ∈ 𝐷(𝜕Ψ)”, by identifying the operator 𝜕Ψ with
its graph in 𝑋 ×𝑋.
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Example 1 (Examples of the subdifferential). For any 𝜀 ≥ 0, let 𝑓 𝜀 :
R −→ [0,∞) be a continuous and convex function, defined as follows:

𝑓 𝜀 : 𝑦 ∈ R ↦→ 𝑓 𝜀(𝑦) :=
√︀
𝜀2 + |𝑦|2 ∈ [0,∞). (2.2)

When 𝜀 > 0, 𝑓 𝜀 ∈ 𝐶∞(R), and hence the subdifferential 𝜕𝑓𝜀 ⊂ R × R
coincides with the single-valued function of the standard differential (𝑓 𝜀)′ ∈
𝐿∞(R), i.e.:

𝐷(𝜕𝑓𝜀) = R, and 𝜕𝑓𝜀(𝑦) = (𝑓 𝜀)′(𝑦) =
𝑦√︀

𝜀2 + |𝑦|2
, for any 𝑦 ∈ R.

Meanwhile, when 𝜀 = 0, the corresponding function 𝑓0 coincides with the
function of absolute value | · | : R −→ [0,∞). Hence, the subdifferential 𝜕𝑓0

of this case coincides with the set-valued signal function Sgn : R −→ 2R,
which is defined as follows:

𝜉 ∈ R ↦→ Sgn(𝜉) :=

⎧⎪⎨⎪⎩
𝜉

|𝜉|
, if 𝜉 ̸= 0,

[−1, 1], otherwise,

(2.3)

i.e.:

𝐷(𝜕𝑓0) = 𝐷(𝜕| · |) = R, and 𝜕𝑓0(𝑦) = 𝜕| · |(𝑦) = Sgn(𝑦), for any 𝑦 ∈ R.

Next, we mention about a notion of functional convergence, known as
“Mosco-convergence”.

Definition 1 (Mosco-convergence: cf. [11]). Let 𝑋 be an abstract Hilbert
space. Let Ψ : 𝑋 −→ (−∞,∞] be a proper, l.s.c., and convex function,
and let {Ψ𝑛}∞𝑛=1 be a sequence of proper, l.s.c., and convex functions Ψ𝑛 :
𝑋 −→ (−∞,∞], 𝑛 = 1, 2, 3, . . . . Then, it is said that Ψ𝑛 → Ψ on 𝑋, in the
sense of Mosco, as 𝑛→ ∞, iff. the following two conditions are fulfilled.

(M1) The condition of lower-bound: lim
𝑛→∞

Ψ𝑛(�̌�𝑛) ≥ Ψ(�̌�), if �̌� ∈ 𝑋,

{�̌�𝑛}∞𝑛=1 ⊂ 𝑋, and �̌�𝑛 → �̌� weakly in 𝑋, as 𝑛→ ∞.

(M2) The condition of optimality: for any �̂� ∈ 𝐷(Ψ), there exists a
sequence {�̂�𝑛}∞𝑛=1 ⊂ 𝑋 such that �̂�𝑛 → �̂� in 𝑋 and Ψ𝑛(�̂�𝑛) → Ψ(�̂�),
as 𝑛→ ∞.

Remark 1. Let 𝑋, Ψ, and {Ψ𝑛}∞𝑛=1 be as in Definition 1. Then, the
following facts hold.

(Fact 1) (cf. [2, Theorem 3.66]) Let us assume that

Ψ𝑛 → Ψ on 𝑋, in the sense of Mosco, as 𝑛→ ∞,
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and{︂
[𝑤,𝑤*] ∈ 𝑋 ×𝑋, [𝑤𝑛, 𝑤

*
𝑛] ∈ 𝜕Ψ𝑛 in 𝑋 ×𝑋, 𝑛 ∈ N,

𝑤𝑛 → 𝑤 in 𝑋, and 𝑤*
𝑛 → 𝑤* weakly in 𝑋, as 𝑛→ ∞.

Then, it holds that:

[𝑤,𝑤*] ∈ 𝜕Ψ in 𝑋 ×𝑋, and Ψ𝑛(𝑤𝑛) → Ψ(𝑤), as 𝑛→ ∞.

(Fact 2) (cf. [6, Lemma 4.1] and [8, Appendix]) Let 𝑁 ∈ N denote a con-
stant of dimension, and let 𝑆 ⊂ R𝑁 be a bounded open set. Then, un-
der the assumptions and notations as in (Fact 1), a sequence {̂︀Ψ𝑆

𝑛}∞𝑛=1

of proper, l.s.c., and convex functions on 𝐿2(𝑆;𝑋), defined as:

𝑧 ∈ 𝐿2(𝑆;𝑋) ↦→ ̂︀Ψ𝑆
𝑛(𝑧) :=

⎧⎪⎪⎨⎪⎪⎩
∫︁
𝑆
Ψ𝑛(𝑧(𝑦)) 𝑑𝑡,

if Ψ𝑛(𝑧) ∈ 𝐿1(𝑆),

∞, otherwise,

for 𝑛 = 1, 2, 3, . . . ;

converges to a proper, l.s.c., and convex function ̂︀Ψ𝑆 on 𝐿2(𝑆;𝑋),
defined as:

𝑧 ∈ 𝐿2(𝑆;𝑋) ↦→ ̂︀Ψ𝑆(𝑧) :=

⎧⎨⎩
∫︁
𝑆
Ψ(𝑧(𝑦)) 𝑑𝑡, if Ψ(𝑧) ∈ 𝐿1(𝑆),

∞, otherwise;

on 𝐿2(𝑆;𝑋), in the sense of Mosco, as 𝑛→ ∞.

Example 2 (Example of Mosco-convergence). Let {𝑓 𝜀}𝜀≥0 ⊂ 𝐶(R) be the
sequence of nonexpansive convex functions, as in (2.2). Then, for any
𝜀0 ≥ 0, 𝑓𝜀 → 𝑓 𝜀0 , uniformly on R, as 𝜀→ 𝜀0, so that:

𝑓 𝜀 → 𝑓 𝜀0 on R, in the sense of Mosco, as 𝜀→ 𝜀0.

Basic and specific notations. For arbitrary 𝑟0, 𝑠0 ∈ [−∞,∞], we de-
fine:

𝑟0 ∨ 𝑠0 := max{𝑟0, 𝑠0} and 𝑟0 ∧ 𝑠0 := min{𝑟0, 𝑠0},

and in particular, we set:

[𝑟]+ := 𝑟 ∨ 0 and [𝑟]− := −(𝑟 ∧ 0), for any 𝑟 ∈ R.

Finally, we remark on the specific functionals 𝑉𝛼 : 𝐻 −→ [0,∞], 𝑊𝛽 :
𝐻 −→ [0,∞], and Φ𝛼,𝛽 : 𝐻 −→ [0,∞], that are defined in (1.2), (1.3), and
(1.1), respectively.
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Remark 2. (cf. [1; 4]) The functional 𝑉𝛼 coincides with the so-called
lower semi-continuous envelope of the following convex function:

𝜃 ∈𝑊 1,1(Ω) ↦→ ̃︀𝑉𝛼(𝜃) := ∫︁
Ω
𝛼|𝜕𝑥𝜃| 𝑑𝑥 ∈ [0,∞),

more precisely,

𝑉𝛼(𝜃) = inf

{︂
lim
𝑖→∞

̃︀𝑉𝛼(𝜗𝑖) {𝜗𝑖}∞𝑖=1 ⊂𝑊 1,1(Ω), and

𝜗𝑖 → 𝜃 in 𝐻, as 𝑖→ ∞

}︂
, (2.4)

for any 𝜃 ∈ 𝐻.

In the light of (1.2) and (2.4), we can verify the following facts.

(Fact 3) 𝑉𝛼 is a proper, l.s.c., and convex function on 𝐻, such that:

− the restriction 𝑉𝛼|𝑊 1,1(Ω) coincides with ̃︀𝑉𝛼;
− 𝐷(𝑉𝛼) ⊃ 𝐵𝑉 (Ω), and 𝐷(𝑉𝛼) = 𝐵𝑉 (Ω) if min𝛼(Ω) > 0.

(Fact 4) For any 𝜃 ∈ 𝐷(𝑉𝛼), there exists {𝜗𝑖}∞𝑖=1 ⊂ 𝑊 1,1(Ω) such that

𝜗𝑖 → 𝜃 in 𝐻, and ̃︀𝑉𝛼(𝜗𝑖) → 𝑉𝛼(𝜃), as 𝑖→ ∞.

Remark 3. The functional 𝑊𝛽 is a proper, l.s.c., and convex function on
𝐻, such that 𝐷(𝑊𝛽) = 𝑉 . Moreover, the subdifferential 𝜕𝑊𝛽 ⊂ 𝐻 ×𝐻 is
a single valued operator, such that

[𝜃, 𝜃*] ∈ 𝜕𝑊𝛽 in 𝐻 ×𝐻, iff. 𝛽𝜕𝑥𝜃 ∈ 𝐻1
0 (Ω), and 𝜃

* = −𝜕𝑥(𝛽𝜕𝑥𝜃) in 𝐻.

Remark 4. Let us fix 𝜀 ≥ 0 and let Φ𝜀𝛼,𝛽 be a function on 𝐻, defined as
follows:

Φ𝜀𝛼,𝛽(𝜃) :=

⎧⎨⎩
∫︁
Ω
𝛼
√︀
𝜀2 + |𝜕𝑥𝜃|2 𝑑𝑥+

1

2

∫︁
Ω
𝛽|𝜕𝑥𝜃|2𝑑𝑥, if 𝜃 ∈ 𝑉,

∞, otherwise.

(2.5)

Under the assumption (2.1), the functions Φ𝜀𝛼,𝛽, for 𝜀 ≥ 0, are proper, l.s.c.,
and convex on 𝐻. Especially, when 𝜀 = 0, the corresponding functional
Φ0
𝛼,𝛽 coincides with the convex function Φ𝛼,𝛽, defined in (1.1).

Remark 5. Let us fix any 𝜀 > 0, and let us define a map 𝒜𝜀 : 𝐷(𝒜𝜀) ⊂
𝐻 −→ 𝐻, by putting:

𝐷(𝒜𝜀) :=
{︁
𝜃 ∈ 𝑉

⃒⃒⃒
𝛼(𝑓 𝜀)′(𝜕𝑥𝜃) + 𝛽𝜕𝑥𝜃 ∈ 𝐻1

0 (Ω)
}︁
,

and
𝜃 ∈ 𝐷(𝒜𝜀) ⊂ 𝐻 ↦→ 𝒜𝜀𝜃 := −𝜕𝑥

(︀
𝛼(𝑓 𝜀)′(𝜕𝑥𝜃) + 𝛽𝜕𝑥𝜃

)︀
.

Then, by applying the standard variational technique, we can observe that:

𝒜𝜀 = 𝜕Φ𝜀𝛼,𝛽 in 𝐻 ×𝐻.

Известия Иркутского государственного университета.
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3. Auxiliary lemma

In this Section, we prove an auxiliary lemma which is associated with
the approximating approach to the Main Theorem.

Lemma 1. Let {𝜀𝑚}∞𝑚=1 ⊂ (0,∞) be arbitrary sequence such that 𝜀𝑚 → 0
as 𝑚→ ∞. Then, for the sequence {Φ𝜀𝑚𝛼,𝛽}

∞
𝑚=1, it holds that:

Φ𝜀𝑚𝛼,𝛽 → Φ𝛼,𝛽 on 𝐻, in the sense of Mosco, as 𝑚→ ∞.

Proof. First, we show the lower-bound condition (M1) in Definition 1. Let
𝜃 ∈ 𝐻 and {𝜃𝑚}∞𝑚=1 ⊂ 𝐻 be such that:

𝜃𝑚 → 𝜃 weakly in 𝐻, as 𝑚→ ∞. (3.1)

Then, it is sufficient to consider only the case when lim𝑚→∞Φ𝜀𝑚𝛼,𝛽(𝜃
𝑚) <∞,

since the other case is trivial. So, by taking a subsequence {𝑚𝑘}∞𝑘=1 ⊂ {𝑚},
one can say that:

lim
𝑚→∞

Φ𝜀𝑚𝛼,𝛽(𝜃
𝑚) = lim

𝑘→∞
Φ
𝜀𝑚𝑘
𝛼,𝛽 (𝜃𝑚𝑘) <∞. (3.2)

With (2.5), (3.1), and (3.2) in mind, we further see that:

𝜕𝑥𝜃
𝑚𝑘 → 𝜕𝑥𝜃 weakly in 𝐻,

and
√︀
𝛽𝜕𝑥𝜃

𝑚𝑘 →
√︀
𝛽𝜕𝑥𝜃 weakly in 𝐻, as 𝑘 → ∞, (3.3)

by taking more one subsequence if necessary. In the light of (2.2), (3.1)–
(3.3), Remark 3, weakly lower semi-continuity of Φ𝛼,𝛽, the lower-bound
condition can be verified (M1), as follows:

lim
𝑘→∞

Φ
𝜀𝑚𝑘
𝛼,𝛽 (𝜃𝑚𝑘) ≥ lim

𝑘→∞
Φ𝛼,𝛽(𝜃

𝑚𝑘) ≥ Φ𝛼,𝛽(𝜃).

Next, we show the optimality condition (M2) in Definition1. Let us fix
any 𝜃 ∈ 𝐷(Φ𝛼,𝛽)(= 𝑉 ), and let us take a sequence {𝜙𝑘}∞𝑘=1 ⊂ 𝐶∞(Ω) such
that:

𝜙𝑘 → 𝜃 in 𝑉, and in the pointwise sense, a.e. in Ω, as 𝑘 → ∞. (3.4)

By (3.4) and Lebesgue’s dominated convergence theorem, we can configure
a sequence {𝑚𝑘}∞𝑘=0 ⊂ N such that 1 =: 𝑚0 < 𝑚1 < 𝑚2 < · · · < 𝑚𝑘 ↑ ∞,
as 𝑘 → ∞, and for any 𝑘 ∈ N ∪ {0},

sup
𝑚≥𝑚𝑘

⃒⃒
𝑓 𝜀𝑚(𝜕𝑥𝜙

𝑘)− |𝜕𝑥𝜙𝑘|
⃒⃒
𝐿1(Ω)

<
1

2𝑘(|𝛼|𝐿∞(Ω) + 1)
. (3.5)
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Based on these, let us define:

𝜃𝑚 :=

{︃
𝜙𝑘 if 𝑚𝑘 ≤ 𝑚 < 𝑚𝑘+1, for 𝑘 ∈ N,

𝜙1 if 1 ≤ 𝑚 < 𝑚1,
for any 𝑚 ∈ N. (3.6)

Taking into account (3.4)–(3.6) and Hölder’s inequality, we obtain that:⃒⃒
Φ𝜀𝑚𝛼,𝛽(𝜃

𝑚)− Φ𝛼,𝛽(𝜃)
⃒⃒

≤
⃒⃒⃒⃒∫︁

Ω

(︀
𝛼𝑓𝜀𝑚(𝜕𝑥𝜃

𝑚)− 𝛼|𝜕𝑥𝜃|
)︀
𝑑𝑥

⃒⃒⃒⃒
+

1

2

∫︁
Ω
𝛽
⃒⃒
|𝜕𝑥𝜃𝑚|2 − |𝜕𝑥𝜃|2

⃒⃒
𝑑𝑥

≤ |𝛼|𝐿∞(Ω)

(︂∫︁
Ω

sup
𝑚≥𝑚𝑘

⃒⃒
𝑓 𝜀𝑚(𝜕𝑥𝜙

𝑘)− |𝜕𝑥𝜙𝑘|
⃒⃒
𝑑𝑥+

∫︁
Ω

⃒⃒
|𝜕𝑥𝜙𝑘| − |𝜕𝑥𝜃|

⃒⃒
𝑑𝑥

)︂

+
|𝛽|𝐿∞(Ω)

2
|𝜙𝑘 − 𝜃|𝑉

(︂∫︁
Ω
2(|𝜕𝑥𝜙𝑘|2 + |𝜕𝑥𝜃|2) 𝑑𝑥

)︂ 1
2

≤ 1

2𝑘
+ |𝜙𝑘 − 𝜃|𝑉 ·

·

(︃
√
2𝐿|𝛼|𝐿∞(Ω) +

|𝛽|𝐿∞(Ω)

2

(︂∫︁
Ω
2(|𝜕𝑥𝜙𝑘|2 + |𝜕𝑥𝜃|2) 𝑑𝑥

)︂ 1
2

)︃
,

for any 𝑘 ∈ N ∪ {0} and any 𝑚 ≥ 𝑚𝑘,

and therefore,

Φ𝜀𝑚𝛼,𝛽(𝜃
𝑚) → Φ𝛼,𝛽(𝜃), as 𝑚→ ∞.

Thus, we conclude this lemma.

4. Proof of Main Theorem

In this Section, we give the proof of Main Theorem. Let us define a
set-valued map 𝒜0 : 𝐷(𝒜0) ⊂ 𝐻 −→ 2𝐻 , by putting:

𝐷(𝒜0) :=

⎧⎨⎩ 𝜃 ∈ 𝑉

there exists 𝜛* ∈ 𝐿∞(Ω) such that

∙ 𝜛* ∈ Sgn(𝜕𝑥𝜃) a.e. in Ω

∙ 𝛼𝜛* + 𝛽𝜕𝑥𝜃 ∈ 𝐻1
0 (Ω)

⎫⎬⎭ , (4.1)

and

𝜃 ∈ 𝐷(𝒜0) ⊂ 𝐻

↦→ 𝒜0𝜃 :=

⎧⎨⎩ 𝜃* ∈ 𝐻

𝜃* = −𝜕𝑥
(︀
𝛼𝜛* + 𝛽𝜕𝑥𝜃

)︀
in 𝐻,

for some 𝜛* ∈ 𝐿∞(Ω), satisfying

𝜛* ∈ Sgn(𝜕𝑥𝜃) a.e. in Ω

⎫⎬⎭ . (4.2)

We prove Main Theorem in accordance with the following two Steps.
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Step 1: 𝒜0 = 𝜕Φ𝛼,𝛽 in 𝐻 ×𝐻.

Step 2: 𝜕Φ𝛼,𝛽 = 𝜕𝑉𝛼 + 𝜕𝑊𝛽 in 𝐻 ×𝐻.

Verification of Step 1.

First, we show 𝒜0 ⊂ Φ𝛼,𝛽 in 𝐻 × 𝐻. Let us assume 𝜃 ∈ 𝐷(𝒜0) and
𝜃* ∈ 𝒜0𝜃. Then, by (4.2), there exists 𝜛* ∈ 𝐿∞(Ω) such that:

𝜛* ∈ Sgn(𝜕𝑥𝜃) a.e. in Ω and 𝜃* = −𝜕𝑥(𝛼𝜛* + 𝛽𝜕𝑥𝜃) in 𝐻. (4.3)

From Remark 2, (2.3), (4.3), and Young’s inequality, we can compute that:

(𝜃*, 𝜙− 𝜃)𝐻 =
(︀
−𝜕𝑥

(︀
𝛼𝜛* + 𝛽𝜕𝑥𝜃

)︀
, 𝜙− 𝜃

)︀
𝐻

=

∫︁
Ω
𝛼𝜛*𝜕𝑥(𝜙− 𝜃) 𝑑𝑥+

∫︁
Ω
𝛽 𝜕𝑥𝜃 𝜕𝑥(𝜙− 𝜃) 𝑑𝑥

≤
∫︁
Ω
𝛼
(︀
|𝜕𝑥𝜙| − |𝜕𝑥𝜃|

)︀
𝑑𝑥+

1

2

∫︁
Ω
𝛽(|𝜕𝑥𝜙|2 − |𝜕𝑥𝜃|2) 𝑑𝑥

= Φ𝛼,𝛽(𝜙)− Φ𝛼,𝛽(𝜃), for any 𝜙 ∈ 𝑉.

This implies that:

𝜃 ∈ 𝐷(𝜕Φ𝛼,𝛽) and 𝜃
* ∈ 𝜕Φ𝛼,𝛽(𝜃) in 𝐻.

Thus, the inclusion 𝒜0 ⊂ 𝜕Φ𝛼,𝛽 in 𝐻 ×𝐻 is verified.

Next, we prove the equality (𝒜0 + 𝐼𝐻)𝐻 = 𝐻. Since, the inclusion
(𝒜0 + 𝐼𝐻)𝐻 ⊂ 𝐻 is trivial, it is sufficient to prove the converse inclusion.

Let us take any ℎ ∈ 𝐻. Then, by Remark 5 and Minty’s theorem
(cf. [3, Theorem 2.2]), we can configure a class of function {𝜃𝜀}𝜀>0 ⊂ 𝑉 , by
setting {𝜃𝜀 := (𝒜𝜀 + 𝐼𝐻)

−1ℎ}𝜀>0 in 𝐻, i.e.

ℎ− 𝜃𝜀 = 𝒜𝜀𝜃𝜀 = 𝜕Φ𝜀𝛼,𝛽(𝜃
𝜀) in 𝐻, for any 𝜀 > 0, (4.4)

so that:∫︁
Ω

(︀
𝛼(𝑓 𝜀)′(𝜕𝑥𝜃

𝜀) + 𝛽𝜕𝑥𝜃
𝜀
)︀
𝜕𝑥𝜙𝑑𝑥+

∫︁
Ω
𝜃𝜀𝜙𝑑𝑥

=

∫︁
Ω
ℎ𝜙𝑑𝑥, for any 𝜙 ∈ 𝑉, and any 𝜀 > 0. (4.5)

In the variational form (4.5), let us put 𝜙 = 𝜃𝜀. Then, with (2.2) and
Young’s inequality in mind, we deduce that:

1

2
|𝜃𝜀|2𝐻 + |

√︀
𝛽𝜕𝑥𝜃

𝜀|2𝐻 ≤ 1

2
|ℎ|2𝐻 , for any 𝜀 > 0. (4.6)

The above (4.6) enable us to take a function 𝜃 ∈ 𝑉 and a sequence 𝜀1 >
𝜀2 > 𝜀3 > · · · > 𝜀𝑚 ↓ 0, as 𝑚→ ∞, such that:

𝜃𝜀𝑚 → 𝜃 in 𝐻, weakly in 𝑉,

and
√︀
𝛽𝜕𝑥𝜃

𝜀𝑚 →
√︀
𝛽𝜕𝑥𝜃 weakly in 𝐻, as 𝑚→ ∞. (4.7)
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In the light of Lemma 1, (4.4), (4.7), and (Fact 1), it follows that:

ℎ− 𝜃 ∈ 𝜕Φ𝛼,𝛽(𝜃) in 𝐻, and Φ𝜀𝑚𝛼,𝛽(𝜃
𝜀𝑚) → Φ𝛼,𝛽(𝜃), as 𝑚→ ∞. (4.8)

Also, by Remark 2, (2.2), (4.7), (4.8), and weakly lower semi-continuity of
the norm | · |𝐻 , we can compute that:

1

2

∫︁
Ω
𝛽|𝜕𝑥𝜃|2 𝑑𝑥 ≤ 1

2
lim
𝑚→∞

∫︁
Ω
𝛽|𝜕𝑥𝜃𝜀𝑚 |2 𝑑𝑥 ≤ 1

2
lim
𝑚→∞

∫︁
Ω
𝛽|𝜕𝑥𝜃𝜀𝑚 |2 𝑑𝑥

≤ lim
𝑚→∞

Φ𝜀𝑚𝛼,𝛽(𝜃
𝜀𝑚)− lim

𝑚→∞

∫︁
Ω
𝛼𝑓𝜀𝑚(𝜕𝑥𝜃

𝜀𝑚) 𝑑𝑥

≤ Φ𝛼,𝛽(𝜃)−
∫︁
Ω
𝛼|𝜕𝑥𝜃| 𝑑𝑥 =

1

2

∫︁
Ω
𝛽|𝜕𝑥𝜃|2 𝑑𝑥. (4.9)

Having in mind (4.7), (4.9), and the uniform convexity of 𝐿2-based topolo-
gies, it is deduce that:√︀

𝛽𝜕𝑥𝜃
𝜀𝑚 →

√︀
𝛽𝜕𝑥𝜃 in 𝐻, as 𝑚→ ∞. (4.10)

Furthermore, by (2.1), (4.7), and (4.10), we obtain that:

𝜃𝜀𝑚 → 𝜃 in 𝑉, and 𝜕𝑥𝜃
𝜀𝑚 → 𝜕𝑥𝜃 in 𝐻, as 𝑚→ ∞. (4.11)

In the meantime, by Example 1, |(𝑓 𝜀𝑚)′(𝜕𝑥𝜃𝜀𝑚)| ≤ 1 a.e. in Ω, for any
𝑚 ∈ N, and one can say

(𝑓 𝜀𝑚)′(𝜕𝑥𝜃
𝜀𝑚) → 𝜛* weakly-* in 𝐿∞(Ω), as 𝑚→ ∞,

for some 𝜛* ∈ 𝐿∞(Ω), (4.12)

by taking a subsequence if necessary.
From (2.3), (4.11), (4.12), Example 2, (Fact 1), and [5, Proposition 2.16],

it is inferred that:

𝜛* ∈ Sgn(𝜕𝑥𝜃) a.e. in Ω. (4.13)

On account of (4.10)–(4.12), letting 𝑚→ ∞ in (4.5) yields that:∫︁
Ω

(︀
𝛼𝜛* + 𝛽𝜕𝑥𝜃

)︀
𝜕𝑥𝜙𝑑𝑥+

∫︁
Ω
𝜃𝜙 𝑑𝑥 =

∫︁
Ω
ℎ𝜙𝑑𝑥, for any 𝜙 ∈ 𝑉. (4.14)

In particular, putting 𝜙 = 𝜙0 ∈ 𝐻1
0 (Ω) in (4.14), we have:

(ℎ− 𝜃, 𝜙0)𝐻 =

∫︁
Ω

(︀
𝛼𝜛* + 𝛽𝜕𝑥𝜃, 𝜕𝑥𝜙0

)︀
𝑑𝑥, for any 𝜙0 ∈ 𝐻1

0 (Ω),

which implies:

−𝜕𝑥
(︀
𝛼𝜛* + 𝛽𝜕𝑥𝜃

)︀
= ℎ− 𝜃 ∈ 𝐻, in D ′(Ω). (4.15)
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In addition, we observe that:(︁
𝛼𝜛* + 𝛽𝜕𝑥𝜃, 𝜓

)︁
𝐻Γ

=
[︁(︀
𝛼(𝑥)𝜛*(𝑥) + 𝛽(𝑥)𝜕𝑥𝜃(𝑥)

)︀
𝜓(𝑥)

]︁𝐿
−𝐿

=

∫︁
Ω
𝜕𝑥
(︀(︀
𝛼𝜛* + 𝛽𝜕𝑥𝜃

)︀
[𝜓]ex

)︀
𝑑𝑥

= −
∫︁
Ω
(ℎ− 𝜃)[𝜓]ex 𝑑𝑥+

∫︁
Ω

(︀
𝛼𝜛* + 𝛽𝜕𝑥𝜃

)︀
𝜕𝑥[𝜓]

ex 𝑑𝑥

= 0, for any 𝜓 ∈ 𝐻Γ with any extension [𝜓]ex ∈ 𝑉. (4.16)

(4.15) and (4.16) lead to:

𝛼𝜛* + 𝛽𝜕𝑥𝜃 ∈ 𝐻1
0 (Ω). (4.17)

As a consequence of (4.1), (4.2), (4.13), and (4.17), we obtain that:

(𝒜0 + 𝐼𝐻)𝜃 = ℎ in 𝐻, i.e. ℎ ∈ (𝒜0 + 𝐼𝐻)𝐻,

and we verify 𝐻 ⊂ (𝒜0 + 𝐼𝐻)𝐻.
Finally, the inclusion 𝒜0 ⊂ 𝜕Φ𝛼,𝛽 in 𝐻 × 𝐻, and the equality (𝒜0 +

𝐼𝐻)𝐻 = 𝐻 enable us to apply Minty’s theorem (cf. [3, Theorem 2.2]), and to
verify that 𝒜0 is a maximal monotone. Moreover, the inclusion 𝒜0 ⊂ 𝜕Φ𝛼,𝛽
and the maximality of 𝒜0 will lead to the coincidence 𝒜0 = 𝜕Φ𝛼,𝛽 in 𝐻×𝐻.

Thus we finish the proof of Step 1.

Verification of Step 2.
By the general theory of the convex analysis [7, Chapter 1], we imme-

diately have 𝜕Φ𝛼,𝛽 ⊃ 𝜕𝑉𝛼 + 𝜕𝑊𝛽 in 𝐻 × 𝐻. So, we prove the converse
inclusion:

𝜕Φ𝛼,𝛽 ⊂ 𝜕𝑉𝛼 + 𝜕𝑊𝛽 in 𝐻 ×𝐻. (4.18)

Let us take any [𝜃, 𝜃*] ∈ 𝜕Φ𝛼,𝛽 in 𝐻×𝐻, and apply the result of previous
Step 1, to have a function 𝜛* ∈ 𝐿∞(Ω) as in (4.3). On this basis, we verify
this Step 2, via the verifications of four Claims.

Claim ♯1). 𝜃 ∈ 𝐻2(Ω) and 𝜕𝑥𝜃 ∈ 𝐻1
0 (Ω).

For every 𝑎 ≥ 0 and 𝑏 > 0, let 𝜌(𝑎,𝑏) : R −→ 2R be a set-valued function,
defined as:

𝜌(𝑎,𝑏)(𝑟) := 𝑎 Sgn(𝑟) + 𝑏𝑟 ⊂ R, for any 𝑟 ∈ R, (4.19)

and let 𝜌*(𝑎,𝑏) be the inverse of 𝜌(𝑎,𝑏). Then, as is easily checked from (2.3)

and (4.19),

𝜌*(𝑎,𝑏) : 𝑟 ∈ R ↦→ [𝑟 − 𝑎]+ − [𝑟 + 𝑎]−

𝑏
∈ R, (4.20)

i.e. (𝜌(𝑎,𝑏))
* is a single-valued Lipschitz function, such that
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0 ≤ (𝜌*(𝑎,𝑏))
′ ≤ 1

𝑏
on R, for every 𝑎 ≥ 0 and 𝑏 > 0.

Here, from (4.19), (4.20), and Step 1, we immediately see that:

𝜃 := 𝜌(𝛼(·),𝛽(·))(𝜕𝑥𝜃) = 𝛼𝜛* + 𝛽𝜕𝑥𝜃 ∈ 𝐻1
0 (Ω), and 𝜃

* = −𝜕𝑥𝜃 in 𝐻. (4.21)

Therefore, having in mind (4.20) and (4.21), and applying the generalized
chain rule in BV-theory [1, Theorem 3.99], it is inferred that:

𝜕𝑥𝜃 = (𝜌*(𝛼(·),𝛽(·)))(𝜃) =
[𝜃 − 𝛼]+ − [𝜃 + 𝛼]−

𝛽
∈ 𝐻1

0 (Ω),

𝜕2𝑥𝜃 = 𝜕𝑥

[︃
[𝜃 − 𝛼]+ − [𝜃 + 𝛼]−

𝛽

]︃
=

1

𝛽

[︀
𝜕𝑥(𝜃 − 𝛼)𝜒(𝛼(·),∞)(𝜃) + 𝜕𝑥(𝜃 + 𝛼)𝜒(−∞,−𝛼(·))(𝜃)

]︀
− 𝜕𝑥𝛽

𝛽2
(︀
[𝜃 − 𝛼]+ − [𝜃 + 𝛼]−

)︀
∈ 𝐻.

Thus, Claim ♯1) is verified.

Claim ♯2). 𝛽𝜕𝑥𝜃 ∈ 𝐻1
0 (Ω) and [𝜃,−𝜕𝑥(𝛽𝜕𝑥𝜃)] ∈ 𝜕𝑊𝛽 in 𝐻 ×𝐻.

This Claim ♯2) is immediately observed from Claim♯1) and Remark 3.

Claim ♯3). 𝛼𝜛* ∈ 𝐻1
0 (Ω) and [𝜃,−𝜕𝑥(𝛼𝜛*)] ∈ 𝜕𝑉𝛼 in 𝐻 ×𝐻.

By using (4.21), Claim♯2), and the integration by part, we can observe
that:

𝛼𝜛* = 𝜃 − 𝛽𝜕𝑥𝜃 ∈ 𝐻1
0 (Ω), (4.22)

and ∫︁
Ω
− 𝜕𝑥(𝛼𝜛

*)(𝜙− 𝜃) 𝑑𝑥 =

∫︁
Ω
𝛼𝜛*𝜕𝑥(𝜙− 𝜃) 𝑑𝑥

≤
∫︁
Ω
𝛼|𝜕𝑥𝜙| 𝑑𝑥−

∫︁
Ω
𝛼|𝜕𝑥𝜃| 𝑑𝑥, for any 𝜙 ∈𝑊 1,1(Ω). (4.23)

Next, let us take any 𝑧 ∈ 𝐷(𝑉𝛼), and invoke (Fact 4) to take a sequence
{𝜙𝑖}∞𝑖=1 ⊂𝑊 1,1(Ω) such that:

𝜙𝑖 → 𝑧 in 𝐻, and ̃︀𝑉𝛼(𝜙𝑖)(︂= ∫︁
Ω
𝛼|𝜕𝑥𝜙𝑖| 𝑑𝑥

)︂
→ 𝑉𝛼(𝑧), as 𝑖→ ∞. (4.24)

Besides, putting 𝜙 = 𝜙𝑖 in (4.23), with 𝑖 ∈ N, and using (4.24), we deduce
that

(−𝜕𝑥(𝛼𝜛*), 𝑧 − 𝜃)𝐻 + 𝑉𝛼(𝜃)

= lim
𝑖→∞

∫︁
Ω
−𝜕𝑥(𝛼𝜛*)(𝜙𝑖 − 𝜃) 𝑑𝑥+ 𝑉𝛼(𝜃)

≤ lim
𝑖→∞

̃︀𝑉𝛼(𝜙𝑖) = 𝑉𝛼(𝑧), for any 𝑧 ∈ 𝐷(𝑉𝛼). (4.25)
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(4.22) and (4.25) finish the verification of Claim ♯3).

Claim ♯4). 𝜃* ∈ 𝜕𝑉𝛼(𝜃) + 𝜕𝑊𝛽(𝜃) in 𝐻.

This Claim ♯4) will be a straight forward consequence of (4.2), Step 1,
Claim ♯1)–Claim ♯3), and the linearity of distributional differential:

𝜃* = −𝜕𝑥(𝛼𝜛* + 𝛽𝜕𝑥𝜃) = −𝜕𝑥(𝛼𝜛*)− 𝜕𝑥(𝛽𝜕𝑥𝜃) in D ′(Ω).

Claim ♯1)–Claim ♯4) enable us to verify the inclusion (4.18), and to com-
plete the proof of Main Theorem.

5. Conclusion

In this paper, the regularized total variation functional with nonhomoge-
neous coefficients is considered, and it is concluded that the subdifferential
of this functional is decomposed to the sum of a weighted singular diffusion
and a weighted linear diffusion. The result, stated in the Main Theorem,
is to guarantee the 𝐻2-regularity of the nonhomogeneously weighted quasi-
linear equations. The novelty of this work is in the point that the result
is obtained by means of the approximation based on Mosco-convergence,
and the generalized chain rule in BV-theory [1, Theorem 3.99]. Indeed,
the mathematical method adopted here is different with the traditional
approach based on the PDE-theory (cf. [10]), and also, it would be a simple
method to extend the result of the previous work [12].
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Субдифференциальное разложение одномерной регуля-
ризованной полной вариации с неоднородными коэффи-
циентами

С. Кубота

Университет Чибa, Чиба, Япония

Аннотация. Рассматривается выпуклая функция, определяемая как одномер-
ная регуляризованная полная вариация с неоднородными коэффициентами. Дока-
зывается основная теорема, касающаяся разложения субдифференциала этой вы-
пуклой функции на взвешенную сингулярную диффузию и линейную регулярную
диффузию. Основная теорема заключается в усилении предыдущего результата о
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регулярности для квазилинейного уравнения с сингулярностью и, кроме того, предо-
ставлении некоторой полезной информации в продвинутых математических иссле-
дованиях движения границ зерен, основанных на энергии типа KWC.

Ключевые слова: субдифференциальное разложение, неоднородные коэффи-
циенты, квазилинейное уравнение с особенностью.
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