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Abstract. We introduce a new concept of equilibrium based on Nash and Berge equi-
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1. Introduction

Game theory plays an important role in applied mathematics, economics
and decision theory. There are many works devoted to game theory. Most
of them deals with a Nash equilibrium. A global search algorithm for
finding a Nash equilibrium was proposed in [13]. Also, the extraproximal
and extragradient algorithms for the Nash equilibrium have been discussed
in [3]. Berge equilibrium is a model of cooperation in social dilemmas,
including the Prisoner’s Dilemma games [15].
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The Berge equilibrium concept was introduced by the French mathe-
matician Claude Berge [5] for coalition games. The first research works of
Berge equilibrium were conducted by Vaisman and Zhukovskiy [18; 19]. A
method for constructing a Berge equilibrium which is Pareto-maximal with
respect to all other Berge equilibriums has been examined in Zhukovskiy
[10]. Also, the equilibrium was studied in [16] from a view point of dif-
ferential games. Abalo and Kostreva [1; 2] proved the existence theorems
for pure-strategy Berge equilibrium in strategic-form games of differential
games. Nessah [11] and Larbani, Tazdait [12] provided with a new existence
theorem. Applications of Berge equilibrium in social science have been
discussed in [6; 17]. Also, the work [7] deals with an application of Berge
equilibrium in economics. Connection of Nash and Berge equilibriums has
been shown in [17]. Most recently, the Berge equilibrium was examined in
Enkhbat and Batbileg [14] for Bimatrix game with its nonconvex optimiza-
tion reduction. In this paper, inspired by Nash and Berge equilibriums, we
introduce a new notion of equilibrium so-called Anti-Berge equilibrium.
The main goal of this paper is to examine Anti-Berge equilibrium for
bimatrix game.

The work is organized as follows. Section 2 is devoted to the existence
of Anti-Berge equilibrium in a bimatrix game for mixed strategies. In
Section 3, an optimization formulation of Anti-Berge equilibrium has been
formulated.

2. Bimatrix Game

Consider the bimatrix game in mixed strategies with matrices (𝐴,𝐵) for
players 1 and 2.

𝐴 = (𝑎𝑖𝑗), 𝑖 = 1, . . . ,𝑚,

𝐵 = (𝑏𝑖𝑗), 𝑗 = 1, . . . , 𝑛.

Denote by 𝑋 and 𝑌 the sets

𝑋 = {𝑥 ∈ 𝑅𝑚 |
𝑚∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚},

𝑌 = {𝑦 ∈ 𝑅𝑛 |
𝑛∑︁
𝑗=1

𝑦𝑗 = 1, 𝑦𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛}.

A mixed strategy for player 1 is a vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑚)
𝑇 ∈ 𝑋 repre-

senting the probability that player 1 uses a strategy 𝑖. Similarly, the mixed
strategies for player 2 is 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)

𝑇 ∈ 𝑌 . Their expected payoffs
are given by :

𝑓1(𝑥, 𝑦) = 𝑥𝑇𝐴𝑦, 𝑓2(𝑥, 𝑦) = 𝑥𝑇𝐵𝑦.
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First, we introduce the definitions of the equilibriums

Definition 1. A pair strategy (𝑥1, 𝑦1) ∈ 𝑋 × 𝑌 is a Nash equilibrium if{︂
𝑓1(𝑥

1, 𝑦1) ≥ 𝑓1(𝑥, 𝑦
1), ∀𝑥 ∈ 𝑋,

𝑓2(𝑥
1, 𝑦1) ≥ 𝑓2(𝑥

1, 𝑦), ∀𝑦 ∈ 𝑌.

Definition 2. A pair strategy (𝑥2, 𝑦2) ∈ 𝑋 × 𝑌 is a Berge equilibrium if{︂
𝑓1(𝑥

2, 𝑦2) ≥ 𝑓1(𝑥
2, 𝑦), ∀𝑦 ∈ 𝑌,

𝑓2(𝑥
2, 𝑦2) ≥ 𝑓2(𝑥, 𝑦

2), ∀𝑥 ∈ 𝑋.

Definition 3. A pair strategy (𝑥3, 𝑦3) ∈ 𝑋 × 𝑌 is an Anti-Berge equilib-
rium(with respect to player 2) if{︂

𝑓1(𝑥
3, 𝑦3) ≥ 𝑓1(𝑥

3, 𝑦), ∀𝑦 ∈ 𝑌,
𝑓2(𝑥

3, 𝑦3) ≤ 𝑓2(𝑥, 𝑦
3), ∀𝑥 ∈ 𝑋.

It is clear that
𝑓1(𝑥

3, 𝑦3) = max
𝑦∈𝑌

𝑓1(𝑥
3, 𝑦),

𝑓2(𝑥
3, 𝑦3) = min

𝑥∈𝑋
𝑓2(𝑥, 𝑦

3).

Definition 4. A pair strategy (𝑥4, 𝑦4) ∈ 𝑋 × 𝑌 is an Anti-Berge equilib-
rium(with respect to player 1) if{︂

𝑓1(𝑥
4, 𝑦4) ≤ 𝑓1(𝑥

4, 𝑦), ∀𝑦 ∈ 𝑌,
𝑓2(𝑥

4, 𝑦4) ≥ 𝑓2(𝑥, 𝑦
4), ∀𝑥 ∈ 𝑋.

In Nash equilibrium both of players maximizes their payoff functions
simultaneously. In Berge equilibrium both of players mutually supports
each other to maximize their payoffs while in the Anti-Berge equilibrium
one of them minimizes other’s payoff function. In other words, one of them
behaves unpleasantly and is antagonistic to other.

Before we introduce Anti-Berge equilibrium for 3-person game, it is
worth mentioning Berge equilibrium [10] for the game.

Definition 5. A triple strategy (𝑥*, 𝑦*, 𝑧*) ∈ 𝑋 × 𝑌 × 𝑍 is a Berge
equilibrium if⎧⎨⎩

𝑓1(𝑥
*, 𝑦*, 𝑧*) ≥ 𝑓1(𝑥

*, 𝑦, 𝑧), ∀(𝑦, 𝑧) ∈ 𝑌 × 𝑍,

𝑓2(𝑥
*, 𝑦*, 𝑧*) ≥ 𝑓2(𝑥, 𝑦

*, 𝑧), ∀(𝑥, 𝑧) ∈ 𝑋 × 𝑍,

𝑓3(𝑥
*, 𝑦*, 𝑧*) ≥ 𝑓3(𝑥, 𝑦, 𝑧

*), ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌,

where the functions 𝑓𝑖(𝑥, 𝑦, 𝑧), 𝑖 = 1, 2, 3 defined on a set 𝑋 × 𝑌 × 𝑍 of
strategies are payoff functions of the players.

Now we introduce Anti-Berge equilibrium in the following.
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Definition 6. A triple strategy (𝑥*, 𝑦*, 𝑧*) ∈ 𝑋 × 𝑌 ×𝑍 is an Anti-Berge
equilibrium (with respect to player 3) if⎧⎨⎩

𝑓1(𝑥
*, 𝑦*, 𝑧*) ≥ 𝑓1(𝑥

*, 𝑦, 𝑧), ∀(𝑦, 𝑧) ∈ 𝑌 × 𝑍,

𝑓2(𝑥
*, 𝑦*, 𝑧*) ≥ 𝑓2(𝑥, 𝑦

*, 𝑧), ∀(𝑥, 𝑧) ∈ 𝑋 × 𝑍,

𝑓3(𝑥
*, 𝑦*, 𝑧*) ≤ 𝑓3(𝑥, 𝑦, 𝑧

*), ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌.

An existence of Anti-Berge equilibrium for a bimatrix game is given by
the following proposition.

Theorem 1. There exists an Anti-Berge equilibrium in a bimatrix game
for mixed strategies.

Proof. We follow up similarly the proof done for Berge equilibrium in [14].
Define the sets 𝑆1(𝑥) and 𝑆2(𝑦) as follows:

𝑆1(�̄�) =

{︂
𝑦 ∈ 𝑌

⃒⃒
𝑓1(�̄�, 𝑦) = max

𝑦∈𝑌
𝑓1(�̄�, 𝑦)

}︂
,

𝑆2(𝑦) =

{︂
�̄� ∈ 𝑋

⃒⃒
𝑓2(�̄�, 𝑦) = min

𝑥∈𝑋
𝑓2(𝑥, 𝑦)

}︂
.

Since the functions 𝑓1 and 𝑓2 are continuous and the sets 𝑋, 𝑌 are
compact then there exist max𝑦∈𝑌 𝑓1(�̄�, 𝑦), min𝑥∈𝑋 𝑓2(𝑥, 𝑦). Thus 𝑆1(𝑥) ̸= ∅
and 𝑆2(𝑦) ̸= ∅.

Introduce the mapping 𝒦 in the following:

𝒦 : 𝑋 × 𝑌 → 𝑆1 × 𝑆2.

It is clear that if (𝑥*, 𝑦*) is Anti-Berge equilibrium then (𝑥*, 𝑦*) ∈
𝒦(𝑥*, 𝑦*). We show that 𝒦 is convex compact. Indeed, for any (�̃�, 𝑦) ∈
𝒦(�̄�, 𝑦) and (�̂�, 𝑦) ∈ 𝒦(�̄�, 𝑦) we have

𝑓1(�̄�, 𝑦) = max
𝑦∈𝑌

𝑓1(�̄�, 𝑦),

𝑓2(�̃�, 𝑦) = min
𝑥∈𝑋

𝑓2(𝑥, 𝑦),

𝑓1(�̄�, 𝑦) = max
𝑦∈𝑌

𝑓1(�̄�, 𝑦),

𝑓2(�̂�, 𝑦) = min
𝑥∈𝑋

𝑓2(𝑥, 𝑦).

Since 𝑓1 and 𝑓2 are bilinear functions, for 𝛼 ∈ [0, 1] these equalities imply
that

𝑓1(�̄�, 𝛼𝑦 + (1− 𝛼)𝑦) = max
𝑦∈𝑌

𝑓1(�̄�, 𝑦),

Известия Иркутского государственного университета.
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𝑓2(𝛼�̃�+ (1− 𝛼)𝑦, 𝑦) = min
𝑥∈𝑋

𝑓2(𝑥, 𝑦),

which means that

(𝛼�̃�+ (1− 𝛼)𝑦, 𝛼𝑦 + (1− 𝛼)𝑦) ∈ 𝒦(�̄�, 𝑦).

Thus 𝒦 is convex.
On the other hand, max𝑦∈𝑌 𝑓1(�̄�, 𝑦) and min𝑥∈𝑋 𝑓2(𝑥, 𝑦) are continuous

functions on 𝑋 × 𝑌 , then 𝒦 is continuous mapping. Since 𝑋 and 𝑌 are
compact then by Tikhonov theorem [8] 𝒦 is also compact.

Therefore, conditions of fixed point theorem [4] are satisfied.
Hence, there exists (𝑥*, 𝑦*) such that

(𝑥*, 𝑦*) ∈ 𝒦(𝑥*, 𝑦*)

with 𝑥* ∈ 𝑆2(𝑦
*) and 𝑦* ∈ 𝑆1(𝑥

*).
This means that

𝑓1(𝑥
*, 𝑦*) = max

𝑦∈𝑌
𝑓1(𝑥

*, 𝑦) ≥ 𝑓1(𝑥
*, 𝑦), ∀𝑦 ∈ 𝑌,

𝑓2(𝑥
*, 𝑦*) = min

𝑥∈𝑋
𝑓2(𝑥, 𝑦

*) ≤ 𝑓2(𝑥, 𝑦
*), ∀𝑥 ∈ 𝑋

which proves the assertion.
For further purpose, it is useful to formulate the following theorem.

Theorem 2. A pair strategy (𝑥*, 𝑦*) is an Anti-Berge equilibrium if and
only if

𝑓1(𝑥
*, 𝑦*) ≥

[︁
𝑥*

𝑇
𝐴
]︁
𝑗
, 𝑗 = 1, 2, . . . , 𝑛, (2.1)

𝑓2(𝑥
*, 𝑦*) ≤ [𝐵𝑦*]𝑖 , 𝑖 = 1, 2, . . . ,𝑚. (2.2)

Proof. Necessity. Assume that (𝑥*, 𝑦*) is an Anti-Berge equilibrium.
Then by Definition 3, we have

𝑓1(𝑥
*, 𝑦*) ≥ 𝑥*

𝑇
𝐴𝑦, ∀𝑦 ∈ 𝑌, (2.3)

𝑓2(𝑥
*, 𝑦*) ≤ 𝑥𝑇𝐵𝑦*, ∀𝑥 ∈ 𝑋. (2.4)

In the first inequality (2.3), successively choose 𝑦 = (0, 0, . . . , 1, . . . , 0) with
1 in each of the 𝑛 spots, in (2.4) choose 𝑥 = (0, 0, . . . , 1, . . . , 0) with 1 in
each of the 𝑚 spots. We can easily see that

𝑓1(𝑥
*, 𝑦*) ≥

[︁
𝑥*

𝑇
𝐴
]︁
𝑗
, 𝑗 = 1, . . . , 𝑛,

𝑓2(𝑥
*, 𝑦*) ≤ [𝐵𝑦*]𝑖 , 𝑖 = 1, . . . ,𝑚.

Sufficiency. Suppose that for a pair (𝑥*, 𝑦*) ∈ 𝑋 × 𝑌 , conditions (3.11)
and (3.12) are satisfied. We choose 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 and multiply (3.11) by
𝑦𝑗 and (3.12) by 𝑥𝑖 respectively. We obtain
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𝑦𝑗𝑓1(𝑥
*, 𝑦*) ≥

[︁
𝑥*

𝑇
𝐴
]︁
𝑗
𝑦𝑗 , 𝑗 = 1, 2, . . . , 𝑛.

Summing up these inequalities and taking into account that
∑︀𝑛

𝑗=1 𝑦𝑗 =
1, we get

𝑓1(𝑥
*, 𝑦*) =

(︁∑︀𝑛
𝑗=1 𝑦𝑗

)︁
𝑓1(𝑥

*, 𝑦*) ≥
∑︀𝑛

𝑗=1

∑︀𝑚
𝑖=1 𝑎𝑖𝑗𝑥

*
𝑖 𝑦𝑗 = 𝑥*

𝑇
𝐴𝑦.

By analogy, we also have

𝑓2(𝑥
*, 𝑦*) = (

∑︀𝑚
𝑖=1 𝑥𝑖) 𝑓2(𝑥

*, 𝑦*) ≤
∑︀𝑚

𝑖=1

∑︀𝑛
𝑗=1 𝑏𝑖𝑗𝑥𝑖𝑦

*
𝑗 = 𝑥𝑇𝐵𝑦*.

Thus, we arrive at

𝑓1(𝑥
*, 𝑦*) ≥ 𝑓1(𝑥

*, 𝑦), ∀𝑦 ∈ 𝑌,

𝑓2(𝑥
*, 𝑦*) ≤ 𝑓2(𝑥, 𝑦

*), ∀𝑥 ∈ 𝑋,

concluding that (𝑥*, 𝑦*) is an Anti-Berge equilibrium. The proof is
complete.

3. Quadratic Programming Formulation of Anti-Berge
Equilibrium

Theorem 3. A pair strategy (𝑥*, 𝑦*) is an Anti-Berge equilibrium (with
respect to player 2) for the bimatrix game if and only if there exist scalars
(𝑝*, 𝑞*) such that (𝑥*, 𝑦*, 𝑝*, 𝑞*) is a solution to the following quadratic
programming problem :

max
(𝑥,𝑦,𝑝,𝑞)

𝐹 (𝑥, 𝑦, 𝑝, 𝑞) = 𝑥𝑇 (𝐴−𝐵)𝑦 − 𝑝+ 𝑞 (3.1)

subject to : [︀
𝑥𝑇𝐴

]︀
𝑗
≤ 𝑝, 𝑗 = 1, . . . , 𝑛, (3.2)

[𝐵𝑦]𝑖 ≥ 𝑞, 𝑖 = 1, . . . ,𝑚, (3.3)

𝑚∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚, (3.4)

𝑛∑︁
𝑗=1

𝑦𝑗 = 1, 𝑦𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛. (3.5)

Proof can be done similarly to the theorem in [14] proven for a Berge
equilibrium.

Известия Иркутского государственного университета.
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Proof. Necessity. Suppose that (𝑥*, 𝑦*) is an Anti-Berge equilibrium.
Choose scalars 𝑝* and 𝑞* such that 𝑝* = 𝑓1(𝑥

*, 𝑦*), 𝑞* = 𝑓2(𝑥
*, 𝑦*).

We show that (𝑥*, 𝑦*, 𝑝*, 𝑞*) is a solution to problem (3.1)–(3.5). First,
we show that (𝑥*, 𝑦*, 𝑝*, 𝑞*) is a feasible point for problem (3.1)–(3.5).

By Theorem 2, the equivalent characterization of an Anti-Berge equilib-
rium point, we have

𝑝* = 𝑓1(𝑥
*, 𝑦*) ≥

[︁
𝑥*

𝑇
𝐴
]︁
𝑗
, 𝑗 = 1, . . . , 𝑛,

𝑞* = 𝑓2(𝑥
*, 𝑦*) ≤ [𝐵𝑦*]𝑖 , 𝑖 = 1, . . . ,𝑚.

The rest of the constraints are satisfied because of 𝑥* ∈ 𝑋 and 𝑦* ∈ 𝑌 . It
means that (𝑥*, 𝑦*, 𝑝*, 𝑞*) is a feasible point.

Choose any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Multiply (3.2)-(3.3) by 𝑦𝑗 and 𝑥𝑖,
respectively. If we sum up these inequalities, we obtain

𝑓1(𝑥, 𝑦) = 𝑥𝑇𝐴𝑦 ≤ 𝑝,

𝑓2(𝑥, 𝑦) = 𝑥𝑇𝐵𝑦 ≥ 𝑞.

Hence, we get

𝐹 (𝑥, 𝑦, 𝑝, 𝑞) = 𝑥𝑇 (𝐴−𝐵)𝑦 − 𝑝+ 𝑞 ≤ 0

for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 . But with 𝑝* = 𝑓1(𝑥
*, 𝑦*) and 𝑞* = 𝑓2(𝑥

*, 𝑦*), we
have 𝐹 (𝑥*, 𝑦*, 𝑝*, 𝑞*) = 0. Hence, the point (𝑥*, 𝑦*, 𝑝*, 𝑞*) is a solution to
problem (3.1)–(3.5).

Sufficiency.Let (�̄�, 𝑦, 𝑝, 𝑞) be a solution to problem (3.1)–(3.5).
We show that (�̄�, 𝑦) is an Anti-Berge equilibrium of the game. Since

(�̄�, 𝑦, 𝑝, 𝑞) is a feasible point, the following constraints are satisfied:

[︀
�̄�𝑇𝐴

]︀
𝑗
≤ 𝑝, 𝑗 = 1, . . . , 𝑛,

𝑚∑︁
𝑖=1

�̄�𝑖 = 1, �̄�𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚, (3.6)

[𝐵𝑦]𝑖 ≥ 𝑞, 𝑖 = 1, . . . ,𝑚,
𝑛∑︁
𝑗=1

𝑦𝑗 = 1, 𝑦𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛, (3.7)

Hence, we have

𝑓1(�̄�, 𝑦) = �̄�𝑇𝐴𝑦 ≤ 𝑝

𝑛∑︁
𝑗=1

𝑦𝑗 = 𝑝, (3.8)

𝑓2(�̄�, 𝑦) = �̄�𝑇𝐵𝑦 ≥ 𝑞
𝑚∑︁
𝑖=1

�̄�𝑖 = 𝑞. (3.9)
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Summing up these inequalities, we obtain

𝐹 (�̄�, 𝑦, 𝑝, 𝑞) = �̄�𝑇 (𝐴−𝐵)𝑦 − 𝑝+ 𝑞 ≤ 0. (3.10)

Taking into account (3.8) and (3.9), we conclude that the function 𝐹 (𝑥, 𝑦,
𝑝, 𝑞) reaches its maximum at zero:

𝐹 (�̄�, 𝑦, 𝑝, 𝑞) =
(︀
�̄�𝑇𝐴𝑦 − 𝑝

)︀
+
(︀
�̄�𝑇𝐵𝑦 − 𝑞

)︀
= 0 (3.11)

with
�̄�𝑇𝐴𝑦 = 𝑝, (3.12)

�̄�𝑇𝐵𝑦 = 𝑞. (3.13)

From (3.12)-(3.13) and (6)-(7) we have

𝑝 = 𝑓1(�̄�, 𝑦) = �̄�𝑇𝐴𝑦 ≥
[︀
�̄�𝑇𝐴

]︀
𝑗
𝑗 = 1, . . . , 𝑛,

𝑞 = 𝑓2(�̄�, 𝑦) = �̄�𝑇𝐵𝑦 ≤ [𝐵𝑦]𝑖 𝑖 = 1, . . . ,𝑚.

Now by Theorem 2, (�̄�, 𝑦) is an Anti-Berge equilibrium which completes
the proof.

Note that the condition

𝐹 (𝑥*, 𝑦*, 𝑝*, 𝑞*) = 0

is necessary and sufficient for a (𝑥*, 𝑦*) to be an Anti-Berge equilibrium.
We can also formulate the following assertion for Anti-Berge equilibrium

(with respect to player 1).

Theorem 4. A pair strategy (�̂�*, 𝑦*) is an Anti-Berge equilibrium (with
respect to player 1) for the bimatrix game if and only if there exist scalars
(𝑝*, 𝑞*) such that (�̂�*, 𝑦*, 𝑝*, 𝑞*) is a solution to the following quadratic
programming problem :

max
(𝑥,𝑦,𝑝,𝑞)

𝐹 (𝑥, 𝑦, 𝑝, 𝑞) = 𝑥𝑇 (𝐵 −𝐴)𝑦 + 𝑝− 𝑞

subject to : [︀
𝑥𝑇𝐴

]︀
𝑗
≥ 𝑝, 𝑗 = 1, . . . , 𝑛,

[𝐵𝑦]𝑖 ≤ 𝑞, 𝑖 = 1, . . . ,𝑚,

𝑚∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚,

𝑛∑︁
𝑗=1

𝑦𝑗 = 1, 𝑦𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛.
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As an example, consider the following bimatrix game with matrices 𝐴
and 𝐵 :

𝐴 =

⎛⎜⎜⎜⎜⎝
9 11 6 20
7 4 10 21
2 16 15 9
5 9 9 17
4 3 5 2

⎞⎟⎟⎟⎟⎠ and 𝐵 =

⎛⎜⎜⎜⎜⎝
15 10 5 19
13 18 1 16
11 17 18 12
6 11 3 10
8 12 8 7

⎞⎟⎟⎟⎟⎠
Problem (3.1)–(3.5) for finding Anti-Berge equilibrium (with respect to

player 2) is formulated as:
𝑚𝑎𝑥 𝐹 (𝑥, 𝑦, 𝑝, 𝑞) = −6𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥1𝑦3 + 𝑥1𝑦4 − 6𝑥2𝑦1 − 14𝑥2𝑦2 +

9𝑥2𝑦3 + 5𝑥2𝑦4 − 9𝑥3𝑦1 − 𝑥3𝑦2 − 3𝑥3𝑦3 − 3𝑥3𝑦4 − 𝑥4𝑦1 − 2𝑥4𝑦2 + 6𝑥4𝑦3 +
7𝑥4𝑦4 − 4𝑥5𝑦1 − 9𝑥5𝑦2 − 3𝑥5𝑦3 − 5𝑥5𝑦4 + 𝑝− 𝑞⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9𝑥1 + 7𝑥2 + 2𝑥3 + 5𝑥4 + 4𝑥5 − 𝑝 ≤ 0
11𝑥1 + 4𝑥2 + 16𝑥3 + 9𝑥4 + 3𝑥5 − 𝑝 ≤ 0
6𝑥1 + 10𝑥2 + 15𝑥3 + 9𝑥4 + 5𝑥5 − 𝑝 ≤ 0
20𝑥1 + 21𝑥2 + 9𝑥3 + 17𝑥4 + 2𝑥5 − 𝑝 ≤ 0
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 1
15𝑦1 + 10𝑦2 + 5𝑦3 + 19𝑦4 − 𝑞 ≥ 0
13𝑦1 + 18𝑦2 + 𝑦3 + 16𝑦4 − 𝑞 ≥ 0
11𝑦1 + 17𝑦2 + 18𝑦3 + 12𝑦4 − 𝑞 ≥ 0
6𝑦1 + 11𝑦2 + 3𝑦3 + 10𝑦4 − 𝑞 ≥ 0
8𝑦1 + 12𝑦2 + 8𝑦3 + 7𝑦4 − 𝑞 ≥ 0
𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 = 1
𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0, 𝑥4 ≥ 0, 𝑥5 ≥ 0,
𝑦1 ≥ 0, 𝑦2 ≥ 0, 𝑦3 ≥ 0, 𝑦4 ≥ 0, 𝑦5 ≥ 0.

We can easily check that 𝐹 (𝑥*, 𝑦*, 𝑝*, 𝑞*)=0 with 𝑥*=(0, 0, 0, 0.273, 0.727)𝑇 ,
𝑦* = (0, 0, 0.375, 0.625)𝑇 , 𝑝* = 6.09, 𝑞* = 7.375 and 𝐹 * = 0. It means
that (𝑥*, 𝑦*) is an Anti-Berge equilibrium(with respect to player2) for the
bimatrix game.

On the other hand, the game has also Anti-Berge equilibrium (with
respect to player 1) in pure strategies: 𝑥* = (0, 1, 0, 0, 0)𝑇 , 𝑦* = (0, 1, 0, 0)𝑇 .
But there are two another Anti-Berge equilibria:

𝑥1 = (0.8125, 0, 0.1875, 0, 0)𝑇 , 𝑦1 = (0.764706, 0.235294, 0, 0)𝑇 ,

𝑥2=(0.532895, 0.447368, 0.019737, 0, 0)𝑇 , 𝑦2=(0.6875, 0.21875, 0.09375, 0)𝑇 .
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Conclusion

We examined so-called Anti-Berge equilibrium in a bimatrix game. By
analogy of Nash and Berge equilibriums, we proved the existence of Anti-
Berge equilibrium in the game. Finding an Anti-Berge equilibrium in the
game has been reduced to a quadratic programming problem with an in-
definite matrix. An example has been considered. We introduced also
Anti-Berge equilibrium, a new concept of equilibria, for 3-person game.
Computational aspects of Anti-Berge equilibria will be discussed in a next
paper.
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Равновесие анти-Бержа для биматричных игр

Р.Энхбат

Институт математики и цифровой технологии Академии наук Монголии,
Улан-Батор, Монголия

Аннотация. Рассматривается новая биматричная игра на основе равновесий
Нэша и Бержа. Решение данной игры будем называть равновесием анти-Бержа. С
помощью теоремы Милса [9] задача нахождения равновесия анти-Бержа сводит-
ся к задаче квадратичного программирования с линейными ограничениями. Новое
понятие равновесия анти-Бержа иллюстрируется на численном примере.
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