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Abstract. In this article, we present the idea of m-ideals, prime m-ideals and their
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conclude from the study that the introduction of the m-ideal will explore new fields of
studies in semigroups and their applications.
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1. Introduction

Semigroups are the fundamental blocks of almost all algebraic structures.
Semigroups are characterized in several ways by using the properties and
types of their ideals. The concept of prime ideals in algebraic structures
originated as a generalization of the concept of prime numbers. Prime
ideals are as important in algebraic structures as the prime numbers in the
field of arithmetic [5].
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Ideals are generalized in different ways. One way to generalize ideals is
through positive integers. This was initiated by Lajos [9]. Chinram et al.,
characterized the quasi ideals through two positive integers in semirings
[3]. Ansari et. al., characterized the quasi ideals in semigroups through
the two positive integers [2]. Ansari et. al., also characterized the non-
associated structures ( [6–8; 21]) in his article referred as [1]. Eqbal et.
al., gave the concept of (m, n) semirings [4]. Mahboob et. al., defined
some types of ideals like (m,n)-hyperideals in ordered semihypergroups
using two positive integers m and n [10]. Pibaljommee et. al., presented
(m,n)-bi-quasi hyperideals in semihyperrings [18].

The other way to generalize ideals is through a single positive integer
m. Munir et. al., generalized the bi ideals in the semiring through a
positive integer m and called them m-bi ideals [15]. The author again
presented the concept of the m-bi ideals in the semigroups [11]. Nakkhasen
et. al., gave the concept of the m-bi-hyperideals in semihyperrings through
a positive integer m [16]. Munir et al., presented the idea of m-quasi
ideals in semirings and other related concepts like m-regular and m-weakly
regular semirings in [12]. In the field of fuzzification, Munir et. al., in his
article [14], characterized the semigroups through introducing the concept
of prime fuzzy m-bi ideals.

Generalization of ideals through two non-negative integers (m,n) and
one positive integer m are two different ways to study the different proper-
ties of semigroups. These generalizations naturally motivated us to present
the idea of m-ideals in semigroups. Theory of m-ideals is useful to explore
new results associated with the subsets, e.g., subsemigroups of semigroups.
These study the subsets of semigroups on the lines of the study of the
semigroups themselves. In this way, the m-ideals will help in selecting the
usable samples of larger finite semigroups being used in different scientific
fields like automata theory. As an extension of this work, the researchers
can investigate the properties of ideals for every subset of the semigroup.

In order to explore the nature and structures ofm-ideals along with their
related types in semigroups, we have divided the contents of this paper into
five sections. Section 1 discusses the introduction and essential motivation
of our research work. Section 2 presents the preliminary concepts from
the literature which will be used to build up the theory of the m-ideals.
Section 3 deals with the definition and the properties of m-ideals and prime
m-ideals. Section 4 studies the maximal m-ideals and Section 5 deals with
the irreducible and strongly irreduciblem-ideals, and their basic properties.

2. Preliminaries

In this section, we call the essential definitions from the literature of
semigroups which will be used in building the concepts of m-ideals.
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Definition 2.1. A non-void set S satisfying the closure law and the asso-
ciative law under a given binary operation · from S×S to S is known as a
semigroup.

Definition 2.2. The product of two non-void subsets A, and B of a semi-
group S is defined by AB = {ab : a ∈ A, b ∈ B}.

For a subset A of a semigroup S, and a positive integer m, we have,
Am = AAA...A(m-times) [15]. Considering multiplication of subsets, a
subsemigroup of a semigroup S is a nonempty subset A with the property
that A2 ⊆ A, where A2 = AA ⊆ A. Since A3 = AAA ⊆ A2 ⊆ A, i.e.,
A3 ⊆ A2, and A3 ⊆ A. In this way, we reason that Al ⊆ Am for any two
positive integers l and m, to the extent that l ≥ m. Subsequently, Am ⊆ A,
for all positive integers m, however the converse does not follow.

Definition 2.3. Let A be a subsemigroup of a semigroup S. If the propo-
sition AS ⊆ A holds, then A is known as a right ideal of A. If SA ⊆ A
holds, then A is known as a left ideal of S. In case, if A is both a right and
a left ideal of S, A is known as a two-sided ideal or simply an ideal of S.

If A is a two-sided ideal of S, then SAS = (SA)S ⊆ AS ⊆ A. Con-
versely, if SAS ⊆ A and S has a left identity e, then AS = eAS ⊆ SAS ⊆
A, so that A is a right ideal of S. Comparably, if S has a right identity
and SAS ⊆ A, then A is a left ideal of S. Consequently, if S has a two-
sided identity and SAS ⊆ A, then A is a two-sided ideal of S. So, without
identity, SAS ⊆ A may not infer either SA ⊆ A or AS ⊆ A.

Definition 2.4. Let A be a subsemigroup of a semigroup S. If the propo-
sition AmSAn ⊆ A holds, for any two non-negative integers m and n, then
A is called an (m,n)-ideal of S [9].

3. m-Ideals and Prime m-Ideals

In this section, we first present the ideas m-ideals, then the ideas of
prime m-ideals and their associated are presented.

3.1. m-Ideals

Definition 3.2. Let S be a semigroup, a subsemigroup A of S is called an
m-left(m-right) ideal of S if SmA ⊆ A(ASm ⊆ A), for any positive integer
m. In the case that A is both an m-left and m-right ideals of S, then A is
called an m-ideal of S. For this situation, we have SmASm ⊆ A.

Each left/right ideal of S is 1-left/1-right ideal of S. More explicitly,
every m-left/m-right ideal of S is n-left/n-right ideal of S for all m ≥ n,
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however, the opposite does not follow. This follows from the foregoing
results in the Preliminary Section 2, and is demonstrated in the following
Example 3.3.

Intersection of m-left and m-right ideal of S is m-quasi ideal of S, as
ASm ⊆ A, and SmA ⊆ A infer ASm∩SmA ⊆ A. For a more detailed inves-
tigation of m-bi ideals in semigroups, m-bi ideals in semirings and m-quasi
ideals in semirings, the References [11], [15], and [12] can be respectively
followed.

Example 3.3. Let S = {1, 2, 3, 4, 5, 6} be the semigroup with the binary
operation defined on its elements in the Table 1 [5]. It is evident that

Table 1

· 1 2 3 4 5 6

1 1 1 1 4 4 4

2 1 1 1 4 4 4

3 1 1 2 4 4 5

4 4 4 4 1 1 1

5 4 4 4 1 1 1

6 4 4 5 1 1 2

S2 = {1, 2, 4, 5}. The subset A = {1, 2, 3, 4} of S is a subsemigroup of S.
In addition, S2A = {1, 4} ⊆ A. That is, A is 2-left ideal of A. Similarly,
A is 2-right ideal of A. Eventually, A is 2-ideal of S. Nonetheless, A is
not a left ideal or a right ideal of S, on the reasons that

AS = {1, 2, 3, 4}{1, 2, 3, 4, 5, 6} = {1, 2, 4, 5} 6⊆ A.

Here, AS = SA. Consequently, A is not an ideal of S.

Theorem 3.1. The product of an m-left ideal and n-left ideal of S is a
max(m,n)-left ideal of S, m and n are any two positive integers.

Proof. Let L1 be m-left and L2 be n-left ideals of S. Consider

Smax(m,n)L1L2 ⊆ SmL1L2 ⊆ L1L2,

so L1L2 is max(m,n)-left of S.

Corollary 3.4. The product of two m-left ideals of S is an m-left ideal of
S.

Proof. Straightforward.

Also, we can express the following theorems.
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Theorem 3.2. The product of an m-right ideal and n-right ideal of S is a
max(m,n)-right ideal of S.

Proof. Straightforward.

Corollary 3.5. The product of two m-right ideals of S is a m-right ideal
of S.

Proof. Straightforward.

Theorem 3.3. The product of an m-ideal and n-ideal of S is a max(m,n)-
ideal of S.

Proof. Since the product is both m-left ideal and m-right ideal, so this
product is max(m,n)-ideal.

Corollary 3.6. The product of m-two-sided ideals of a semigroup S is an
m-two-sided ideal of S.

Proof. Straightforward.

Remark 3.7. Any finite collection of m-left(m-right, m-two-sided) ideals
of a semigroup S, taken in any order, is also an m-left (m-right, m-two-
sided) ideal of S. This result likewise holds for the distinct positive whole
numbers.

Theorem 3.4. If L is an m-left ideal and R an m-right ideal of semigroup
S, then LR is a m-ideal of S.

Proof. Since SmLR ⊆ LR, and LRSm ⊆ LR, so LR is a m-ideal of S.

Remark 3.8. In the above case, the product RL needs neither be an m-left
nor an m-right ideal of S.

Theorem 3.5. For some natural number n the intersection of any collec-
tion of m1, m2, · · · , mn -left(-right, -two-sided) ideals of a semigroup S is
an s-left(-right, -two-sided) ideal of S, where s = max(m1,m2, ...,mn).

Proof. Clear.

Remark 3.9. The intersection of an m-left ideal L and an m-right ideal
R, L ∩R is not an m-ideal.

Definition 3.10. The principal m-left ideal generated by an element a ∈ S
is the m-left ideal Sma. If the left identity e ∈ S, then a = ea ∈ Sma. If S
does not have a left identity, then we may have a /∈ Sma. For instance, the
principal ideal generated by 3 in the multiplicative semigroup of multiples
of 3 does not possess 3.
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The principal m-right ideal generated by a is characterized to be aSm.
If S possesses a right identity, then a ∈ aS; otherwise, a may or may not
be in aSm.

The principal two-sided m-ideal generated by a is characterized to be
SmaSm, which has a if S has a two-sided identity.

3.11. Prime m-Ideals

In this part of the section, we characterize the prime m-left, m-right and
m-ideals in semigroups.

Definition 3.12. An m-left ideal P of a semigroup S is said to be prime
m-left ideal if AB ⊆ P infers that A ⊆ P or B ⊆ P for any two m-left
ideals A, B of S.

Similarly, we can define the prime m-right ideal and prime m ideals of
S.

Definition 3.13. An m-left(m-right, m-two-sided) ideal P of a semigroup
S is said to be completely prime if a, b ∈ S and ab ∈ P infer that either
a ∈ P or b ∈ P .

Along these lines, we can define the completely prime m-right ideal and
m ideals of S.

Remark 3.14. Completely primeness implies primeness; the opposite fol-
lows if the semigroup is commutative [17].

Theorem 3.6. The union of an arbitrary collection of completely prime
m-right ideals of a semigroup S is a completely prime m-right ideal of S.

Proof. Let {Pi : i ∈ I} be a collection of completely prime m-right ideals
of S, and let a, b ∈ S and ab ∈ ∪

i∈I
Pi. This gives ab ∈ Pi, for some i ∈ I.

But, Pi is completely prime, so a ∈ Pi or b ∈ Pi, for some i ∈ I. Therefore,
either a ∈ ∪

i∈I
Pi or b ∈ ∪

i∈I
Pi. This brings that ∪

i∈I
Pi is completely prime.

In a similar way, we can prove this theorem for m-left and m-two-sided
completely prime ideals.

The union of two or more ideals may be completely prime, despite the
fact that none of them is completely prime.

The following example shows that the product of two or more completely
prime m-ideals may not be a completely prime m-ideals.

Example 3.15. Consider the set S = {1, 2, 3, 4, 5} together with the mul-
tiplication defined on its elements as is given in Table 2, [5]. S2 =
{1, 2, 4, 5}. 2-right ideals {1, 3, 4, 5} and {4, 5} are completely prime, while
their product {1, 4, 5} is not completely prime.
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In the following example, the product of completely prime m-ideals may
turn out to be completely prime.

Example 3.16. Consider the set S = {1, 2, 3, 4, 5}, with multiplication
defined on its elements as depicted in Table 3, [5]. Then, S2 = {1, 2, 3, 4}.
The product {3, 4} of the completely prime 2-right ideals {2, 3, 4} and {4}
is also completely prime 2-right ideals.

· 1 2 3 4 5

1 1 1 1 1 5

2 2 2 2 2 5

3 1 1 1 1 5

4 4 4 4 4 5

5 5 5 5 5 5

Table 2

· 1 2 3 4 5

1 1 1 3 3 3

2 2 2 3 3 3

3 3 3 3 3 3

4 4 4 4 4 4

5 4 4 4 4 4

Table 3

Generally, the intersection of completely prime m-right/m-left ideals or
m-ideals of a semigroup S is not completely prime. See the example given
below.

Example 3.17. Let S = {1, 2, 3, 4, 5} alongwith Table 4 as given in Ref-
erence [5]. The intersection of completely prime 2-right ideals {1, 2}
and {1, 3}, namely, {1} is not completely prime 2-right ideal of S because
3.2 = 1 ∈ {1}, but neither 2 nor 3 is in {1}.

· 1 2 3 4 5

1 1 1 1 1 5

2 2 2 2 2 5

3 1 1 3 3 5

4 2 2 4 4 5

5 5 5 5 5 5

Table 4

· 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 2 2 2

3 0 2 2 2

Table 5

In the proceeding part, we build up the theory of strongly primem-ideals
and semiprime m-ideals and their relationship with the prime m-ideals.

Definition 3.18. A m-ideal P of a semigroup S is known as a strongly
prime m-ideal if the proposition P1P2 ∩ P2P1 ⊆ P infers either P1 ⊆ P or
P2 ⊆ P for any two m-ideals P1 and P2 of S.

Definition 3.19. A m-ideal P of a semigroup S is known as semiprime
m-ideal if the statement P 2

1 ⊆ P brings P1 ⊆ P for any m-ideal P1 of S.
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The property of strongly primeness implies primeness; however, the op-
posite is not true. Primeness implies semiprimeness, the converse does not
hold.

Example 3.20. The semigroup S itself is always a totally prime, strongly
prime, prime, a semiprime m-ideal of S.

In addition to the semigroup S itself, S can have other these kinds of
ideals. This is demonstrated in the following example.

Example 3.21. Consider the semigroup S = {0, 1, 2, 3} with the binary
operation · given in the Table 5. Taking m = 2, we get S2 = {0, 1, 2}. We
see that

1) The semigroup S being the 2-left ideal and 2-right ideal is 2-ideal. This
ideal is completely prime, strongly prime, prime and semiprime 2-ideal
of S.

2) The set {0} being the 2-left and 2-right ideal is additionally 2-ideal.
This ideal is compeltely prime, prime and semiprime 2-ideal of S.
However, {0} is not strongly prime 2-right ideal(off course 2-ideal) of
S on the grounds that {0, 1}{0, 2}∩{0, 2}{0, 1} = {0, 1}∩{0, 2} = {0},
however none of {0, 1} and {0, 2} is contained in {0}.

3) {0, 1} is 2-right ideal as {0, 1}S2 = {0, 1}{0, 1, 2} = {0, 1} ⊆ {0, 1}
⇒ {0, 1}S2 ⊆ {0, 1}. {0, 1} is not 2-left ideal of S as S2{0, 1}
= {0, 1, 2}{0, 1} = {0, 1, 2} 6⊆ {0, 1} ⇒ S2{0, 1} 6⊆ {0, 1}. {0, 1} is
totally prime, prime, semiprime and strongly prime 2-right ideal.

4) {0, 2} is 2-right ideal as {0, 2}S2 = {0, 2}{0, 1, 2} = {0, 2} ⊆ {0, 2}
⇒ {0, 2}S2 ⊆ {0, 2}. {0, 2} is not 2-left ideal of S as S2{0, 2}
= {0, 1, 2}{0, 2} = {0, 1, 2} 6⊆ {0, 2} ⇒ S2{0, 2} 6⊆ {0, 2}. {0, 2} is
totally prime, prime, semiprime and strongly prime 2-right ideal of S.
This is to be noticed that {0, 2} is not totally prime right ideal of S in
light of the fact that 3× 3 = 2, and 3 /∈ {0, 2}.

5) {0, 1, 2} is 2-ideal as S2{0, 1, 2}S2={0, 1, 2}⇒S2{0, 1, 2}S2⊆{0, 1, 2}.
{0, 1, 2} is totally prime, prime, semiprime and strongly prime 2-right
ideal of S; yet not a totally prime right ideal in light of the fact that
3 × 3 = 2, and 3 /∈ {0, 1, 2}. More remarks on the ideal viz., {0, 1, 2}
will be given in Section 3, Remark 4.3.

Example 3.22. Consider a semigroups S having at least two elements with
the property that yx = x ∀ x, y ∈ S; called right zero semigroup. Since for
an arbitrary element x ∈ S, xx = x. So, S2 = S. Subsequently, Sm = S
for any whole number m ≥ 1. Let P ⊆ S, then SmP = SP = P . This
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implies that P is m-left ideal of S. Thus, each subset of S is an m-left ideal
of S.

In this semigroup, each m-left becomes a prime m-left ideal; off course a
semiprime m-left ideal. This is on the grounds that for m-ideals M1, M2,
we have M1M2 = M2. Additionally, if M is any m-left ideal of S with
the condition that |S −M | ≥ 2, then for any two different elements a, b ∈
S−M , (M∪{a})(M∪{b})∩(M∪{b})(M∪{a}) = (M∪{a})∩(M∪{b}) =M,
but neither (M ∪ {a}) nor (B ∪ {b}) is a subset of M . This implies M is
not strongly prime m-left ideal.

Remarks 3.23. 1) An arbitrary subset of a left zero semigroup, hav-
ing at least two elements, is its m-right ideal. Every m-right is a
prime(semiprime) m-right ideal, but not a strongly prime m-right ideal.

2) A subset of a zero semigroup, with at least two elements, is its m-
ideal. Every m-ideals is a prime as well as semiprime m-ideal, but not
a strongly prime m-ideal.

Example 3.24. We consider the Kronecker delta semigroup,S, defined by
following relation:

xy =

{
x if x = y,

0 otherwise.

Additionally, S is assumed to possess atleast three elements including zero.
Since xx = x, ∀ x ∈ S, Sm = S. Let R be any right ideal of S(m = 1),
then SmR = SR = R. This makes R an m-right ideal of S for all m.
Additionally, if R2

1 ⊆ R, then since R2
1 = R1 for any right ideals R1 and

R of S, so R1 ⊆ R. This infers that all right ideals of S are semiprime
m-right ideals of S. If P is an m-right ideal of S with the condition that
|S − P | > 2, then P is not a prime m-ideal of S because for any two distinct
elements a, b ∈ S − P , (P ∪ {a})(P ∪ {b}) = (P ∪ {a}) ∩ (P ∪ {b}) = P,
however, neither (P ∪ {a}) nor (P ∪ {b}) is contained in P . This result
shows that every semiprime m-right ideal is not prime. In particular, {0}
is a semiprime m-ideal of S which is not a prime m-ideal.

4. Maximal m-Ideals

Alongside prime, strongly prime and semiprime ideals, maximal ideals
are vital to be considered for characterizing semigroups in a benefitting
way. The accompanying lines present the ideas of the maximal m-ideals in
semigroups.
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Definition 4.1. An m-ideal M of a semigroup S, different from Sm, is
said to be a maximal m-ideal in S if there does not exist another m-ideal,
M1 in S, such that M ⊂M1 ⊂ Sm [19].

Similarly, we can interpret the maximality idea for the m-left and m-
right ideals of S.

Definition 4.2. An m-ideal K 6= {0}(If 0 ∈ S) of a semigroup S is termed
as a minimal m-ideal of S if 6 ∃ any other proper m-ideal, K1 in S such
that K1 ⊂ K ⊂ S [19].

Analogously, the minimality idea can be extended for the m-left and m-
right ideals. Recalling Example 3.21 from Section 3, we see thatM = {0, 1}
and N = {0, 2} are the maximal m-right ideals of S = {0, 1, 2, 3}. The m-
right ideals K = {0, 1} and J = {0, 2} are the minimal m-right ideals of
S.

Theorem 4.1. If Sm = (Sm)2 for a semigroup S, then every maximal
m-ideal M of S is a prime m-ideal of S, where m is a positive integer.

Proof. Let M be a maximal m-ideal of semigroup S. To show that M is
prime, let P1P2 ⊂ M for any two m-ideals P1 and P2 of S. Suppose on
contradiction that neither P1 nor P2 is contained in M . Since P1 6⊆ M
and M is maximal, we have P1 ∪M = Sm, subsequently P ⊂ P1, where
P = Sm −M is the complement of M with respect to Sm. Comparably,
we get P ⊂ P2. Along these lines, we get

P 2 ⊂ P1P2 (4.1)

Since Sm = (Sm)2, Sm = (M∪P )2 =M2∪MP ∪PM∪P 2 ⊂M∪P 2. That
is, Sm ⊂M∪P 2. This gives Sm∩P ⊂ (M∪P 2)∩P = (M∩P )∪(P 2∩P ) =
(M ∩ (Sm −M)) ∪ (P 2 ∩ P ) = ∅ ∪ (P 2 ∩ P ) = (P 2 ∩ P ), consequently, we
get

P ⊂ P 2 (4.2)

From (4.1) and (4.2), using transitive property of set inclusion, we get
P ⊂ P1P2, which means Sm −M ⊂ P1P2 ⊂ M , that is Sm −M ⊂ M , a
contradiction. This completes the proof of the theorem.

Remarks 4.3. 1) If S = S2, then Sm = S2m, but the converse does not
follow.

2) If S 6= S2, then Theorem 4.1 does not follow. This is clear from
Example 3.21 that the maximal 2-right ideal {0, 2} is not prime on
the basis that {0, 2, 3}{0, 2, 3} ⊆ {0, 2}, however, {0, 2, 3} 6⊆ {0, 2}, so
{0, 2} is not prime.
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The following theorems deal with the sets of maximal m-ideals, their
intersections and their complement sets in the semigroups.

Theorem 4.2. [19]. Let {Mα : α ∈ Ω} be the family of various maximal
m-ideals of S. Assume |Ω| ≥ 2 and indicate Pα = Sm − Mα and M =⋂
α∈Ω

Mα, we have,

1) Pα ∩ Pβ = ∅ for α 6= β.

2) Sm = ( ∪
α∈Ω

Pα) ∪M .

3) For each ν 6= α, we have Pα ⊂Mν.

4) If J is an m-ideal of S and J ∩ Pα 6= ∅, then Pα ⊂ J .

5) For α 6= β, we have
Pm
α PβP

m
α ⊂M,

that is M is not empty.

Proof. The case |Ω| = 1 is obvious.

1) We have Mα ∪Mβ = Sm for α 6= β. In this way, Pα ∩ Pβ = (Sm −
Mα) ∩ (Sm −Mβ) = Sm − (Mα ∪Mβ) = ∅.

2) Since M = ∩
α∈Ω

Mα = ∩
α∈Ω

(Sm − Pα) = Sm − ∪
α∈Ω

Pα. In this way,

Sm = ( ∪
α∈Ω

Pα) ∪M.

3) For ν 6= α, we have Pα = Sm ∩ Pα = (Mν ∪ Pν) ∩ Pα = Mν ∩ Pα. In
this way, Pα ⊂Mν .

4) Since J ∩ Pα 6= ∅ and J is a m-ideal of S, whereas Mα is the maximal
m-ideal, therefore the set Mα ∪ J is an m-ideal of S greater than Mα.
Thus,Mα∪J = Sm. SinceMα∩Pα = ∅, we have Pα∩Mα∪J = Pα∩Sm,
i.e., Pα∩(Mα∪J) = Pα∩Sm, which gives that (Pα∩Mα)∪(Pα∩J) = Pα,
and, ∅ ∪ (Pα ∩ J) = Pα, i.e., (Pα ∩ J) = Pα, which gives that Pα ⊂ J .

5) Suppose on contradiction that ∃ uα, uδ ∈ Pα and uβ ∈ Pβ such that
uαuβuδ = uγ and uγ /∈M . Utilizing Part(2), we can discover Pγ such
that uγ ∈ Pγ . On the other hand, Pγ 6= Pα. Then, Pα ⊂ S − Pγ =
Mγ . That is, Pα ⊂ Sγ and correspondingly, Pδ ⊂ Sγ . This gives,
Pm
α PβP

m
α ⊂ SmMγS

m ⊂ MγS
m ⊂ Mγ , thus, uγ ∈ Sγ , which is a

contradiction to uγ ∈ Pγ = M\Sγ . Assume now, Pγ = Pβ. Then,
Pβ ⊂ S − Pγ = Mγ and Pm

α PβP
m
α ⊂ SmMαS

m ⊂ Mα, subsequently
uγ ∈ Mα = S − Pα, which is a contradiction to uγ ∈ Pγ . In this way,
Pm
α PβP

m
α ⊂M, and M 6= ∅.
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Theorem 4.3. Let S be a semigroup containing maximal m-ideals and let
M be the intersection of all maximal m-ideals of S. Then, each prime m-
ideal of S containing M and different from Sm is a maximal m-ideal of
S.

Proof. Let N be a prime m-ideal of S containing M and N 6= Sm. Then,
Theorem 4.2: Part(4), N = Sm−( ∪

ν∈Ω
Pν) = ∩

ν∈Ω
(Sm−Pν) = ∩

ν∈Ω
Mν , where

Ω 6= ∅. If |Ω| = 1, we have N = Mν , for example, N is a maximal m-ideal
of S and the theorem is proved. We will show that |Ω| ≥ 2 is not possible.
Assume on opposite that |Ω| ≥ 2. Let β ∈ Ω and indicate H = ∪

ν∈Ω,ν 6=β
Pν .

Then, we have N = H ∩Mβ. Since both H and Mβ are m-ideals, their
product is also m-ideal, thus HMβ ⊂ H ∩ Mβ = N . Since N is prime
m-ideal, so either H ⊂ N or Mβ ⊂ N . We talk about these two prospects
independently:

1) When H ⊂ N . Since N ⊂ H as well, so N = H. Further H =
N = H ∩Mβ suggests H ⊆ Mβ, by Theorem 4.2: Part(3), we have
Pβ ⊆ ∪

ν∈Ω,ν 6=β
Pν = H. Consequently, Pβ ⊂ Sβ, a contradiction to

Pβ ∩Mβ = ∅.

2) When Mβ ⊂ N . Since additionally, N ⊂ Mβ , so N = Mβ. Now,
N = Mβ = H ∩Mβ would infer Mβ ⊂ H. Since Mβ is maximal and
H is an proper subset of S, so H = Mβ . The relation Pβ ⊂ H = Mβ

gives another contradiction.

These two cases complete the proof of the theorem.

Theorem 4.4. S is a semigroup containing at least one maximal m-ideal.
A prime m-ideal N different from Sm is a maximal m-ideal of S ⇐⇒
M ⊂ N , where M = ∩

α∈Ω
Mα, Mα are maximal m-ideals of S.

Proof. If N is a maximal m-ideal, then M ⊂ N . On the other hand, if
M ⊂ N , then by Theorem 4.3, N is a maximal m-ideal of S.

5. Irreducible and Strongly Irreducible m-ideals

Definition 5.1. A m-ideal I of a semigroup S is known as an irreducible
(strongly irreducible) m-ideal if the proposition I1 ∩ I2 = I (I1 ∩ I2 ⊆ I)
infers either I1 = I or I2 = I (either I1 ⊆ I or I2 ⊆ I), for m-ideals I1
and I2 of S.
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A strongly irreducible m-ideal is irreducible; however, the opposite does
not hold. See the accompanying example.

Example 5.2. We have S = {1, 2, 3, 4, 5, 6, 7}; a semigroup with the binary
operation · given in Table 6.

Table 6

· 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 1

3 1 2 3 4 2 2 1

4 1 2 2 2 3 4 1

5 1 2 5 6 2 2 1

6 1 2 2 2 5 6 1

7 1 1 1 1 1 1 1

If we take m = 2, S2 = {1, 2, 3, 4, 5, 6}. We observe that

1) {1} is 2-right and 2-left ideal of S, so is 2-ideal of S. {1}is both
irreducible and strongly irreducible.

2) {1, 2} being 2-right and 2-left ideal of S is 2-ideal of S.

3) {1, 2, 3, 4} is a 2-right ideal, but not 2-left ideal. {1, 2, 3, 4} is an
irreducible 2-right ideal.

4) {1, 2, 5, 6} is a 2-right ideal, but not 2-left ideal. {1, 2, 5, 6} is an
irreducible 2-right ideal.

5) S is 2-right ideal and 2-left ideal, so is 2-ideal of S. S is irreducible.

The condition when a semiprime m-ideal is a prime m-ideal in a semi-
group is elaborated in the following proposition.

Proposition 5.3. A strongly irreducible semiprime m-ideal of a semigroup
is a strongly prime m-ideal.

Proof. Let P be an irreducible semiprime m-ideal of semigroup S. If P1

and P2 are two m-ideals of S with the additional assumption that

P1P2 ∩ P2P1 ⊆ P. (5.1)

Then, since P1 ∩ P2 being intersection of m-ideals is an m-ideal, so after
simplification, we get,

(P1 ∩ P2)
2 ⊆ P1P2 ∩ P2P1. (5.2)
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Consolidating (5.1) and (5.2) through the application of transitive property
of inclusion of sets, we have, (P1 ∩ P2)

2 ⊆ P. This implies P1 ∩ P2 ⊆ P ,
as P is a semiprime. Additionally, since P is strongly irreducible m-ideal
of S, so P1 ⊆ P or P2 ⊆ P ; resulting P into a strongly prime m-ideal of
S.

Proposition 5.4. For any m-ideal P of a semigroup S, such that c ∈ S
and c /∈ P , ∃ an irreducible m- ideal I such that P ⊆ I and c /∈ I.

Proof. Take P = {P : P is an m- ideal of S so that c ∈ S and c /∈ P}.
Then P 6= ∅, because P ∈ P. P is clearly a partially ordered set under the
binary operation of inclusion of m-ideals in P. If S is any totally ordered
subset of P, then T = ∪

Tα∈S,α∈∧
Sα is an m-ideal of S containing P . So we

can find a maximal m- ideal, J , in P. To show that J is irreducible, we
suppose J = J1∩J2 for twom- ideals J1 and J2 of S. If, on contrary, both J1
and J2 contain J properly, then c ∈ J1 and c ∈ J2. Hence c ∈ J1 ∩ J2 = J ;
which contradicts the hypothesis that c /∈ J . Thus J = J1 or J = J2;
implying that J is an irreducible m-ideal.

Theorem 5.1. The following propositions are equivalent [20]:

1) The set R of all m-right ideals of a semigroup S is totally ordered
under the inclusion of sets,

2) Every m-right ideal of S is strongly irreducible m-right ideal,

3) Every m-right ideal of S is irreducible m-right ideal.

Proof. (1 ⇒ 2): Let R is an m-ideal of S, then for any two m-right ideals
R1, R2 of S, R1 ∩ R2 ⊆ R follows. Since R is totally ordered under set
inclusion, either R1 ⊆ R2 or R2 ⊆ R1. This gives, either R1 ∩ R2 = R1

or R1 ∩ R2 = P2. Eventually from the hypothesis, R1 ∩ R2 ⊆ R, we infer
either R1 ⊆ R or R2 ⊆ R; making R a strongly irreducible m-right ideal of
S.

(2 ⇒ 3): This follows immediately from the fact that the strongly
irreducible m-right ideals of S are its irreducible m-right ideal.

(3 ⇒ 1): Assume that R1 ∩ R2 = R1 ∩ R2 holds for two m-right ideals
R1 and R2 of S. Since each m-right ideal of S is irreducible m-right ideal,
R1 = R1∩R2 or R2 = R1∩R2, which further implies R1 ⊆ R2 or R2 ⊆ R1.
Therefore, R1 and R2 are comparable. That is, R is totally ordered under
inclusion of sets.
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6. Conclusion

The idea of m-ideal in the semigroups was introduced. The kinds of
the prime, completely prime, semiprime and strongly prime m-ideals were
introduced for the classification of these ideals. It is hoped that studies
of larger algebraic structures can also be carried out more fruitfully by
characterizing them through m-ideals. The applications of the m-ideals
in the finite and the infinite semigroups theory is quite obvious from the
foregoing examples in the text.
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Изучение полугрупп с помощью свойств простых m -
идеалов
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Аннотация. Вводятся понятия m -идеала, простого m -идеала и связанных с
ними понятий для положительного целого числа m в полугруппе. Рассматривают-
ся различные характеристики полугрупп через m -идеалы. Демонстрируется, что
классическое понятие идеала и связанные с ним понятия отличаются от понятия m
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-идеала и связанных с ним понятий на конкретных примерах максимальных, непри-
водимых и сильно неприводимых m-идеалов. Делается вывод, что введение понятия
m -идеала откроет новые области исследований полугрупп и их приложений.

Ключевые слова: вполне простые m -идеалы, строго простые m -идеалы, мак-
симальные m -идеалы, неприводимые m -идеалы, сильно неприводимые m -идеалы.
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