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On Decompositions of Decision Function
Quality Measure*

V.M. Nedel’ko

Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Abstract. A comparative analysis of two approaches to the decomposition of quality
criterion of decision functions is carried out.

The first approach is the bias-variance decomposition. This is the most well-known
decomposition that is used in analyzing the quality of decision function construction
methods, in particular for justifying some ensemble methods. This usually assumes a
monotonous dependence of the bias and variance on the complexity. Recent studies show
that this is not always true.

The second approach (G.S. Lbov, N.G. Startseva, 1989) is a decomposition into a
measure of adequacy and a measure of statistical stability (robustness). The idea of the
approach is to decompose the prediction error into approximation error and statistical
error.

In this paper we propose a method of statistical estimation of the components of both
decompositions on real data. We compare the dependencies of these components on the
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grants 18-07-00600, 19-29-01175 and by the Russian Science Foundation under grant
20-15-00057. The study was carried out within the framework of the state contract of
the Sobolev Institute of Mathematics (project no 0314-2019-0015).
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complexity of the decision function. Non-normalized margin is used as a general measure
of complexity.

The results of the study and the experiments on UCI data show significant qualitative
similarities in behavior of the bias and the adequacy measure and between the variance
and the statistical stability measure. At the same time, there is a fundamental difference
between the considered decompositions, in particular, with increasing complexity, the
measure of adequacy cannot increase, while the bias first decreases, but at high enough
values of complexity usually starts to grow.

Keywords: machine learning, bias-variance decomposition, decision function complexity.

1. Introduction

In the field of machine learning, it quickly became clear that the key
parameter on which the quality of a solution depends is complexity of class
of decision functions [11] (it is more correct to speak of the complexity of
the method for constructing decision functions) and dependence of quality
on complexity has a specific form: first the error decreases, and then be-
gins to grow [13]. To explain this phenomenon, error decompositions into
components have been proposed.

The best known one is the bias-variance decomposition [20].

In the classical version of the decomposition, “variance” is understood
as the average variance of predicted values, and the bias decomposition
is the mean square of the difference between the average forecast and the
optimal forecast. Averaging is performed over the features space and over
samples (on which the decision function is constructed).

This decomposition is widely used both to explain the characteristic
shape of the learning curve (the dependence of the quality of the solution
on the method complexity) [9] and to justify ensemble methods [6;8], such
as a random forest. Basically examples of dependence of the expansion
components on complexity has a typical qualitative form: the bias de-
creases monotonically, the variance increases monotonically, the sum of
these quantities has a characteristic minimum. However, it was noticed
that in practice, the bias at a sufficiently high complexity can also start to
grow [4].

The decomposition into the measure of adequacy and measure of sta-
bility [12] is devoid of this feature. The idea behind the approach is to
decompose the error into an approximation error and a statistical error.

More complex class of decision functions can potentially better approx-
imate the optimal solution, but the actual accuracy may decrease due to
statistical error when the solution is constructing by a sample.
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2. The problem of constructing decision functions

To introduce the basic concepts, consider the general statement [14] of
the problem of constructing decision functions [19;21].

Let X be the space of values of the variables used for the forecast, and
and Y be space of values of predicted variables, and let on a given o-algebra
of subsets of the set D = X x Y some probability measure is defined P.

In the future, we need to compute the mathematical expectations from
various functions, so we introduce a notation

XxY

Generally X can be an arbitrary set with an arbitrary sigma algebra of
events. However, in practice, we can assume that we are dealing with a
system of random variables. In other words, the joint distribution function
F(z,vy) is given, where x — vector composed of values from X. In this case,
expectation of function f(z,y) can be written as

Exy /() = / f(,y) dF (z,y).

XxY

The existence of a joint integral implies the existence of repeated inte-
grals. With repeated integrals, you can enter the conditional distribution
and the conditional expectation

Exy/f(z,y) = /X /Y f(2,y) dFy o (y) dFx (z) = /X Eyiof (2, ) dFx ().

The decision function is the correspondence A : X — U, i.e. a mapping
from X to space of estimates U, which in a particular case may coincide
with Y, and can, for example, represent estimates of the probabilities of an
object belonging to given classes.

The quality of solution [16] is estimated by given loss function: L :
Y x U — [0, 00).

By risk we mean average losses:

R(A,P) =ExyL(A(x),y)

There are quality criteria [17], which are not expressed in terms of the
integral of the loss function, for example, AUC. We do not consider them
in this paper.

Mostly, the decision function is built on the basis of a random indepen-
dent sample from the distribution P:

VN:((xlvyZ)azzlvaN)a xZ€X7 ylex VNEWNa WN:DN
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The sample size N will be fixed, so this parameter will be omitted in sample
notation. The expectation of sample function is

Epn f(V) = [ 1(Vi) (Pl )™

By the method of constructing decision functions we will call the map-
ping

o0
Q:W A W=|[] Wy,
N=1
where A is given class of decision functions, and W is set of all samples.
Let Ag,vy = Q(Vn) be solution constructed by the ¢ method from a
sample V.
For a solution built on sample risk also becomes a function of sample:

Rq(Vn) = ExyL(Agvy(2),y).

Here we have introduced an abbreviation Rg(Vy) instead of R(Ag vy, P)
to emphasize that the criterion is a function of the sample, while the pa-
rameters () and P are fixed. Since the expression is a function of sample,
it is a random variable.

Quality of the method @ is characterized by the average risk

Fn(Q) = Bwy Ro(V).

The problem of constructing decision functions (machine learning) is to
find a method @ that would minimize Fy(Q).

Note that in this statement there is no concept of “true dependence”.
The primary concept here is a criterion of quality that through the loss
function reflects the objective losses by an erroneous decision. Moreover,
this target criterion may not coincide with the empirical criterion, which is
optimized for searching a solution [18].

To minimize Fx(Q), an understanding of how a given value behaves is
required. To get this, one uses decomposition of Fi(Q) into components
whose behavior is easier to analyze and explain.

The purpose of this work is to analyze the qualitative behavior of de-
compositions components.
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3. Bias and variance

3.1. DECOMPOSITION IDEA

The idea of expansion is based on the following elementary formula,
which is valid for any random variables £ and ¢

E(¢ — ¢)* = D&+ D¢ + (E€ — EC)* — 2cov(€, ().

To get the decomposition for the quadratic loss function, take y as &,
and instead of ¢ substitute Ag v (z). Note that these variables are indepen-
dent. Mathematical expectations will be taken for the joint distribution on
samples of volume N and for the random value y with given x:

We have:

Fn(Q) = Ewy x,y LOAQvy (7),y) = ExBywy viz (AQuvy (T) — y)® =
= ExDyuy + ExDwy Agun () + Ex (Eypy — Ewyx Aoy (@) (3.1)

The first term (the average conditional variance of y) is usually called
“noise”, the second term (the average conditional variance of the forecast)
is the “variance”, and the last term is the mean square of the bias.

3.2. LOGARITHMIC LOSS FUNCTION

Let us now consider the case of a logarithmic loss function. The corre-
sponding decomposition was proposed in the work [5].
For two classes, the logarithmic loss function looks like

L(y,u1) = —ylnu; — (1 —y)In(1l —wy),

where w1 is solution in the form of an estimate of the probability of y = 1,
i.e. the probability that the object belongs to the first class.
For the case of several classes, when Y = {1,...,k}, the solution is a

k
vector u = (ug,...,ux), >, U, = 1. Then the logarithmic loss function
w=1

takes the form
L(y,u) = —Inwu,,

where u, is the solution component corresponding to class y.

In this form, the loss function is not suitable for decomposition, because
instead of gy, distribution cannot be substituted into it. However, the
logarithmic loss function can be written in the form of the Kullback —
Leibler divergence (we will denote it as K(-,-)).

Since divergence is only defined for distributions, we need to match the
distribution to the Y variable. Binary vector can be used. We introduce
random variables (v1, ..., vg), where v, is an indicator function for y = w.
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We get

k k

L(y,u) = —valnuw = valn:;—w = K(v,u).
w=1 w=1 w

In the last expression, we assume 01n0 = 0, therefore v, Inv, = 0.
Due to independence of v and v we have

k k
Eyul(y,u) = — Z E,vEyInu, = — prEu Inu, = E,K(p,u) + H(p),

w=1 w=1

where p,, = Ejv,, is the probability that y = w, and H(p)=— 25:1 P Inp,,.
We introduce the vector w = (y,...,ux), whose components are com-
puted as

1 k
ﬂw — 6€Eulnuw’ C = E eEulnuW7
w=1

where C' is normalization constant that provides the condition 22:1 Uy =
1. Actually @ is just the normalized geometric mean of u vector .
Taking the logarithm, we get

InC =E,;Inu, — In,.

We multiply both sides of the equation by u, and sum up over w. We
get

k
InC = (Eunuy —Inty) = ~EuK (1, u).
w=1

Similarly multiplying by p, and summing up, we have

k
InC =" pu(Eulnu, —Int,) = K(p,u) — EK (p,u).

w=1

Equating the obtained expressions for In C', we obtain the required de-
composition
E.K(p,u) = K(p,u) + E,K(a,u).

Finally
EyuL(y,u) = H(p) + K(p,u) + E, K (u,u). (3.2)

It is decomposition into noise, bias and variance.
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3.3. GENERAL DECOMPOSITION

Notice, that & = argmin E, K (v,u). Thus, the decomposition 3.2 fits
v

into the general decomposition scheme [3].

Value % minimizing variation in [3] called the "main prediction”.

In fact, this is not a ”prediction”, i.e. not the decision function value,
but the distribution for the target variable at which the predictions made
would have the least error. For a symmetric loss function, this remark is
insignificant, but for an asymmetric one (such as divergence), it is necessary
to correct the order of the arguments in the variance component from the
general decomposition [3].

Note that the decomposition 3.2 would look more elegant with K (u, p)
instead of K(p,u). Indeed, the divergence is asymmetric and the first
argument is the “true” distribution, and the second is its estimate.

For the two components of the decomposition, a general definition can
be given that does not depend on a specific loss function.

Noise is the average loss for the optimal decision function.

The variance is the average loss at the "best” distribution for a given
decision function method.

The bias can also be defined in a general way, if you define it simply as
the remainder in the decomposition.

We will not separate the bias from the noise, since this is only possible
on the model (when the distribution is known), but not on real data. Then

EyuL(y,u) = EyuL(y,u) + E, K (,u). (3.3)

In the last decomposition, all values may be estimated from the test
sample.

4. The theory of statistical stability of decision functions

The best known is the error decomposition into bias and variance. How-
ever, probably even earlier, another decomposition was proposed [12]: to
adequacy measure and stability.

The idea behind the approach is to decompose the error into an approx-
imation error and a statistical error.

The more complex class of decision functions, the more accurately it
can potentially approximate optimal solution, but the actual accuracy may
decrease due to statistical error when solution is built on sample.

The basic concept of this decomposition is the asymptotic average risk
or the asymptotic value of the average quality

(@) = Jim Fx(Q). (4.1)
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The measure of adequacy is the difference between the asymptotic mean
risk and the Bayesian risk. This measure shows how good a solution the
method could give in the case of an unlimited sample (or when constructing
solutions on the distributions themselves).

The measure of statistical stability is the difference between the average
risk and the asymptotic one.

Note that it would be more correct to call the introduced components a
measure of inadequacy and a measure of instability, since they characterize
error rather than accuracy. To avoid terminological inconveniences, we will
also use the terms approximation error and statistical estimation error.

The Bayesian level of error (risk) is exactly what in the expansion 3.1
called noise.

We see that the decompositions are similar: both have three components,
one of which (noise) coincides.

Until now, we understood the method as an arbitrary mapping from
samples to solutions.

With this definition, the method can change the algorithm for construct-
ing the solution depending on the sample size. For example, it is quite
possible to imagine such a method that, with a sample size of 100, builds
a solution in the form of a tree, with a size of more than 100, a linear one,
and with a size of more than 1000, uses a neural network.

In the described situation, the definition of the asymptotic average risk
becomes incorrect. In fact, this definition implies a narrower concept of
the method for constructing decision functions. Note that all actually used
methods fit into this concept.

Almost all existing methods for constructing decision functions are meth-
ods that optimize an empirical criterion. Typically, the empirical criterion
is the objective (target) loss function evaluated on sample plus a so-called
regularizer. We assume that the regularizer form does not depend on the
sample size.

Thus, a method is constructed as follows: an empirical quality crite-
rion is set, an optimization problem is posed in a certain class of decision
functions, and an algorithm for solving this problem is constructed.

Generally speaking, it has not been proven that in this case it is neces-
sary to solve [7] optimization problem exactly. It can be assumed that an
algorithm that finds a non-optimal solution from the point of view of an
empirical criterion will find better solutions according the original (target)
criterion. Moreover, the search approximation is a kind of regularization.

Decomposition into the measure of adequacy and stability requires nar-
rowing the concept of the method for constructing decision functions, at
the same time it is applicable to almost any quality criteria, for example,
to AUC.
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5. Bias and variance qualitative behavior

In the following sections, we examine the qualitative behavior of the
decomposition components on real data. However, numerical experiments
based on statistical modeling cannot be considered a rigorous proof of the
assertions, therefore, we first consider synthetic examples in which the
properties of decompositions can be determined analytically.

Example 1. Let the range of values of the target variable be a unit
interval, i.e. Y = [0, 1], and let there be a single variable z with a range
X =[0,1].

Distribution on the set X x Y assume uniform.

Consider two methods for constructing decision functions. Both meth-
ods minimize the sample mean square loss function.

The first method uses decision functions of the form w(z) = a, where
a is a constant selected from a sample, and the second method builds a
solution in the form u(z) = a + bx, where a and b are constants tuned on
(learned from) the sample, and b > 0.

Obviously, the complexity of the second method is higher than the first.

Proposition 3. As the complexity of the method for constructing the
decision function increases, the bias can increase.

Proof. Let’s estimate the biases for the methods from the example 1.

Due to the symmetry of the model, the average solution for the first
method is @(z) = 0,5, whence we find that the bias is zero.

For the second method @(z) cannot be constant (due to b > 0, this
function is increasing), so the bias is nonzero (since the optimal solution is
a constant). O

The considered example includes a completely unnatural limitation b >
0. Such restrictions are hardly presented in the methods used in practice
for constructing decision functions, however, the example is quite correct
as evidence of the possibility of non-monotonic behavior of displacement.

Example 2. Let now X = [0,1], and Y = (—o0, +00).

Distribution on the set X x Y is set as follows: we put the distribution
on X uniform, and the conditional distribution P(dy|z) let it be normal
with parameters x and 1.

The decisive function will be constructed as follows.

Interval X = [0, 1] is splitted into M equal parts, and then we shift all
boundaries by the same value d, which is chosen randomly (in accordance
with a uniform distribution) from the interval (0, ﬁ)

As a result, we get that X is divided into M 4+ 1 parts, of which the first
and the last have a random length, and the lengths of the rest partsare the
same and equal ﬁ
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On each obtained segments, as a solution u(x), we take the sample
mean on this segment (if no points are included in the segment, then as a
solution we assign the arithmetic mean of the coordinates of the ends of
the segment).

Parameter M is characteristic of the complexity of this method.

Proposition 4. As the complexity of the method for constructing the
decision function increases, the variance can decrease.

Proof. Let us estimate the dependence of the variance on M for the method
from the example 2.

Due to the construction of the model, the mean solution u(x) = = on
the interval [ﬁ, 1-— ﬁ], hence the bias on this interval is equal to zero.
On the edge segments, the bias does not exceed ﬁ The average bias over
the entire X can be estimated from above by the value %

General error (mean square deviation) not less then -1 . 12]1\42 and not
more then ﬁ

It follows, that the bias has lower estimate % . ﬁ — ﬁ and upper
estimate ﬁ

By direct substitution, we see that the lower estimate M = 100 is greater
than the upper estimate for M = 1000. O

Remark 1. Defining the method for constructing decision functions as
a function of sample, we did not provide possibility of using random pa-
rameters. However, this is insignificant, since we can always take a value
composed of the least significant decimal places of the sample values as a
random parameter. Formally, we will remain in the class of deterministic
functions of sample, but in practice we will get a randomized solution.

6. Method of statistical modeling on real-world data set

Statistical modeling involves generating a large number of samples, the-
refore, as a rule, it is performed using artificial data set.

This paper proposes a statistical modeling method based on real-world
data set. Now the volume of real data is often so large that you can work
with it, in a sense, as with distributions. At the same time, the concept of
“large” sample is obviously relative. You can use a sample as a distribution
if its size is much larger than the size of the subsamples used for training.

The general scheme of modeling is as follows. The entire sample is
divided into two approximately equal parts, which we will call the complete
training sample and the test sample. The complete training sample is
splited into a large number (of the order of tens or hundreds) of training
samples.
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We will use averaging over a large number of training samples as the
mathematical expectation over the samples. We will interpret averaging
over the test sample as the mathematical expectation over the distribution.

To estimate the limit 4.1 when the sample tends to infinity, we take the
value when training on a full training set.

The described techniques are sufficient for estimating all components of
the expansions, except for “noise”, which we will not separate from the bias
or from the measure of adequacy, respectively.

For further research, it is required to introduce a measure of complex-
ity [1] for a method.

Different methods have different parameters that are responsible for the
complexity of the solution. For example, complexity characteristics for tree
ensembles are the number of trees and the depth of the tree. It is necessary
to introduce a single characteristic of complexity.

Let’s take a margin as a measure of complexity.

Recall that the margin can be normalized and non-normalized. [15].

We use non-normalized margin. This is the margin that ensembles
monotonically increase in the process of learning (by construction). This is
a natural measure of learning.

The normalized margin appears in the assessment of generalizing abil-
ity [10]. As a rule, this margin begins to decrease in the course of training.

Since not all implementations of algorithms for constructing decision
functions provide the output of the margin value, we will calculate it
through the probability estimates, namely

N -
M, V)=> yn . fzﬁ. (6.1)
i=1 v

This formula makes sense only for the case of two classes, when Y =
{—1,1}. Here p; denotes an estimate of the probability of an object be-
longing to class 1.

This expression reflects a real connection [15] between margin and prob-
ability estimates for methods that support the concept of margin (logistic
regression, boosting). For the rest of the methods we will consider 6.1 as
the definition of the average (for the sample) margin.

We can only estimate the noise approximately. But we do not need it
at all, since in every task it is a constant.

7. Experimental results

The Adult Data Set (UCI Machine Learning Repository) was taken
as data for experimental research. The number of objects is 50,000; for
simplicity, 8 numeric variables have been selected.
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--- Boosting, max_depth = 1
--- Boosting, max_depth = 2
~-- Boosting, max_depth = 5
—— Decision Tree

-+ Random Forest

Variance

--- Boosting, max_depth = 1
--- Boosting, max_depth = 2
~-- Boosting, max_depth = 5
—— Decision Tree
-+ Random Forest

Margin

Margin

2.0

25 3.0

Figure 1. Dependencies of bias and variance on margin (complexity parameter)
for various classification methods.

-~ Boosting, max_depth = 1
-~ Boosting, max_depth = 2
-~ Boosting, max_depth = 5

-=-- Boosting, max_depth = 1
-=-- Boosting, max_depth = 2
~=- Boosting, max_depth = 5

—— Decision Tree
-+ Random Forest

—— Decision Tree
-+ Random Forest

Adequacy-+Noise

0.40

Margin

Margin

Figure 2. Dependencies of the measure of adequacy and measure of stability on
the margin (complexity parameter) for various classification methods.

The following classification methods [2] based on trees were taken: deci-
sion tree, random forest and gradient boosting. For the decision tree and for
the random forest, the margin (complexity) was changed by changing the
maximum tree depth. The number of trees in the ensemble of a random
forest has practically no effect on the complexity, so it was assigned at
100. For boosting, the complexity depends on both the depth and the
number of trees, so three curves were built for fixed depth values 1, 2,
and 5 with a varying number of trees. We see (Fig. 1)that the qualitative
form of the dependencies is similar, while the bias does not always decrease
monotonically, but starts to grow from some moment.

In fig. 2 for the same methods, the dependencies for the measure of ade-
quacy and the measure of stability are shown. These components are mono-
tonic due to their properties. Despite the qualitative difference associated
with monotonicity, both decompositions are quite similar.
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8. Conclusion

The paper proposes a statistical modeling scheme that allows us to

estimate the decompositions components on real-world datasets.

A general measure of complexity is proposed: non-normalized margin.
Comparison of two decompositions was carried out: for bias and variance

and for measure of adequacy and stability. It is shown that with increasing
complexity, the bias can increase, and the variance can decrease, while the
decomposition into the measure of adequacy and stability always has a
”canonical” form.
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O passiokeHUAX KpPUTEpUEB KadecTBa pemialmmx (QyHK-
i

B. M. Henenbko

Hremumym mamemamury um. C. JI. Cobosesa, Hosocubupck, Poccutickas
Dedepayun

Awnnoranusi.  [IpoBoauTcs CpaBHUTENLHBINA aHAJIN3 JABYX MOJIXOMOB K PA3JIOXKEHUIO
KpUTEpHUsl KadecTBa pemamux GpyHKIui. [1epBolil moaxom — pas/ioXKeHre Ha, CMellle-
nue n pasbpoc (bias-variance decomposition). Bropoii mojxom — pasiioxkenne Ha Mepy
aJeKBATHOCTU U MEPY CTATUCTUIECKOHN yCTONINBOCTH. BBISIBIIEHO KQUeCTBEHHOE CXOJICTBO
[IOJIyYAeMbIX PA3JIOKEHUH, IIPU 9TOM yCTAHOBJIEHO (KaK AHAJIMTUYECKH, TAK M HA OCHO-
B€ YHCJIEHHOTO IKCIEPUMEHTA), ITO TOJHKO BTOPOI MOJXOM FADAHTUPYET MOHOTOHHOCTD
KOMIIOHEHT DPa3JI0XKEHUSI.

KuaroueBsbie ciioBa: mocTpoeHne pemannux QYHKIUH, paclio3HaBaHne 0opa3os, bi-
as-variance decomposition, crarucrryeckast yCTONIUBOCTD.
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