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Abstract. This paper is devoted to optimal control of dynamical systems governed
by differential inclusions with discontinuous velocity mappings. This framework mostly
concerns a new class of optimal control problems described by various versions of the so-
called sweeping/Moreau processes that are very challenging mathematically and highly
important in applications to mechanics, engineering, economics, robotics, etc. Our ap-
proach is based on developing the method of discrete approximations for optimal control
problems of such differential inclusions that addresses both numerical and qualitative
aspects of optimal control. In this way we establish necessary optimality conditions for
optimal solutions to sweeping differential inclusions and discuss their various applications.
Deriving necessary optimality conditions strongly involves advanced tools of first-order
and second-order variational analysis and generalized differentiation.

Keywords: optimal control, differential inclusions, variational analysis, sweeping pro-
cesses, discrete approximations, generalized differentiation.

1. Introduction

We refer the reader to Part I [22] for optimal control problems gov-
erned by Lipschitzian differential inclusions. Here we address new classes
of dynamic optimization problems described by discontinuous differential

∗ This research was partly supported by the USA National Science Foundation un-
der grants DMS-1512846 and DMS-1808978, by the USA Air Force Office of Scientific
Research under grant 15RT04, and by Australian Research Council, Discovery Project
under grant DP-190100555.



OPTIMAL CONTROL OF DIFFERENTIAL INCLUSIONS, II: SWEEPING 63

inclusion with the main emphasis to deriving necessary optimality condi-
tions. The dynamics of such systems is governed by various versions of
the sweeping process. The original uncontrolled version of the sweeping
process was introduced by Moreau in the 1970s motivated by applications
to problems of elastoplasticity; see [25] and the survey paper [11]. Similar
processes were independently considered by Krasnosel’skii and Pokrovskii
for dynamical systems with hysteresis; see their book [16]. Later various
models of the sweeping type appeared in other areas of applied science and
practical modeling; see more discussions and references below.

Recall that the basic sweeping process of Moreau is described by the
unbounded differential inclusion

ẋ(t) ∈ −N
(
x(t);C(t)

)
a.e. t ∈ [0, T ], x(0) := x0 ∈ C(0), (1.1)

on the fixed time interval [0, T ], whereN(x; Ω) = NΩ(x) signifies the normal
cone to a convex set Ω ⊂ R

n at x in the standard sense of convex analysis

N(x; Ω) :=

{ {
v ∈ R

n
∣∣ 〈v, u − x〉 ≤ 0 for all u ∈ Ω

}
if x ∈ Ω,

∅ otherwise,
(1.2)

and where the moving convex set C(t) continuously depends on time.
Denoting F (x) := −N(x;C(t)) in (1.1), we observe that this velocity

mapping is discontinuous and hence is never Lipschitzian, i.e., fails to satisfy
the crucial assumption of the aforementioned control theory for differential
inclusions. There is a more striking thing to say on comparison of (1.1)
with Lipschitzian differential inclusions: the Cauchy problem in (1.1) ad-
mits a unique solution due to the well-known maximal monotonicity of the
normal cone mapping x 7→ N(x;C(t)) in convex analysis. This excludes, in
contrast to the Lipschitzian theory discussed in Part I [22], the possibility
of optimization of the sweeping differential inclusion as given in (1.1) with
a fixed moving set C(t).

In [7] we suggested for the first time in the literature to insert control
actions into the moving sets

C(t) := C(u(t)
)

for all t ∈ [0, T ], (1.3)

which makes it possible to change and optimize the shape of the right-hand
side in (1.1) in order to achieve a desired performance of the controlled
sweeping process with respect to a prescribed cost functional. This novel
and practically motivated approach led us to a new class of control systems
that is essentially different from those considered before in control theory.
Besides the discontinuity and the changeable shape of the velocity mapping
in (1.1), we unavoidably have the pointwise mixed control-state constraints

x(t) ∈ C
(
u(t)

)
for a.e. t ∈ [0, T ],
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which are intrinsic in (1.1) and (1.3) due to the normal cone construction
(1.2). Such constraints are among the most difficult even for standard
optimal control of smooth systems while being investigated therein only
under restrictive regularity assumptions.

Other classes of dynamic optimization problems for controlled sweep-
ing processes correspond to the appearance of control actions in additive
external perturbations of the type

ẋ(t) ∈ g
(
x(t), w(t)

)
−N

(
x(t);C(t)

)
a.e., x(0) := x0 ∈ C(0), (1.4)

where control functions w(·) may be applied either together with controls
u(·) in the moving sets (1.3), or in the absence of them. Problems of
type (1.4) also exhibit new phenomena in control theory and require the
development and implementation of advanced tools of variational analysis.

Our recent results discussed below show that the machinery of discrete
approximations married to powerful tools of first-order and second-order
generalized differentiation lead us to deriving new necessary optimality
conditions for local minimizers in optimal control problems of both types as
in (1.1), (1.3) and in (1.4) expressed entirely in terms of the given problem
data. Some of the obtained necessary optimality conditions contain con-
ventional Hamiltonian maximization of the Pontryagin maximum principle
(PMP) type. On the other hand, we show that in problems with controlled
moving sets (1.3) the conventional PMP formalism fails, while we are able
to establish a new one in terms of a novel Hamiltonian function.

The rest of the paper is organized as follows. In Section 2 we mainly
present and discuss basic robust constructions of second-order general-
ized differentiation in variational analysis that are appropriate to study
differential inclusions and are widely used in the subsequent sections.

Section 1 addresses some classes of sweeping control problems of type
(1.4) with controls in additive perturbations. First we investigate problems
with smooth controls w(·) and u(·) in perturbations and in moving sets,
respectively, and then study optimization problems with constrained dis-
continuous controls only in perturbations. In the first case the method of
discrete approximation leads us to deriving extended Euler-Lagrange con-
ditions of a new type, while for the sweeping control systems of the second
kind we derive optimality conditions extending the maximum principle.

Section 4 deals with optimal control problems for sweeping processes
with control functions acting in parameterized moving sets. Employing dis-
crete approximations, we derive necessary optimality conditions in appro-
priate Euler-Lagrange and Hamiltonian forms, where the new Hamiltonian
function is introduced to establish a novel version of the maximum prin-
ciple. It is observed that the conventional form of the maximum principle
fails to provide necessary optimality conditions for such control systems.

The concluding Section 5 is devoted to applications of the obtained
necessary optimality conditions to some practical models with smooth and
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nonsmooth dynamics. We discuss here recent applications to corridor and
planar versions of the crowd motion model and related models of traf-
fic equilibria, to hysteresis systems and elastoplasticity problems, and to
typical control models arising in robotics.

Throughout the paper we use the standard notation of variational anal-
ysis, generalized differentiation and control theory; see, e.g., [20; 21] and
also Part I [22] for details.

2. Second-Order Generalized Differentiation

In this section we briefly review some constructions of second-order
generalized differentiation in variational analysis initiated by the author
in [18] that are broadly employed in what follows. The reader can find
more details in the books [19;21] and the bibliographies therein.

The first-order generalized differential constructions used below were
defined in Part I. They are the basic/limiting normal cone N(x̄; Ω) to a set
Ω ⊂ R

n at x̄ ∈ R
n, the subdifferential of an extended-real-valued function

ϕ : R
n → R := (−∞,∞] at x̄ ∈ domϕ, and the coderivative D∗F (x̄, ȳ)(u)

of a set-valued mapping/multifunction F : R
n →→ R

m at (x̄, ȳ) ∈ gphF .
Now we turn to second-order generalized differential constructions for

ϕ : R
n → R by employing the dual “derivative-of-derivative” approach.

Given x̄ ∈ domϕ, pick v̄ ∈ ∂ϕ(x̄) and define the second-order subdifferential
(or generalized Hessian) ∂2ϕ(x̄, v̄) : R

n →→ R
n of ϕ at x̄ relative to v̄ as the

coderivative of the first-order subgradient mapping by

∂2ϕ(x̄, v̄)(u) := (D∗∂ϕ)(x̄, v̄)(u), u ∈ R
n, (2.1)

where v̄ = ∇ϕ(x̄) is dropped ϕ is differentiable at x̄. If ϕ is C2-smooth
around x̄, then (2.1) reduces to the classical (symmetric) Hessian matrix:

∂2ϕ(x̄)(u) =
{
∇2ϕ(x̄)u

}
for all u ∈ R

n.

Second-order subdifferential constructions of type (2.1) naturally appear
in the study of the sweeping processes defined via the normal cone mappings
as in (1.1) and its nonconvex extensions. This is due to the description of
adjoint systems in first-order optimality conditions for differential inclusions
via coderivatives. In fact, in modeling of a large class of sweeping processes
with control-dependent moving sets we use the parameterized normal cone
mapping N : R

n × R
m →→ R

n given by

N(x,w) := N
(
x;S(w)

)
for x ∈ S(w) :=

{
x ∈ R

n
∣∣ θ(x,w) ∈ Θ

}
. (2.2)

To proceed in more detail, consider a function ϕ : R
n × R

m → R of two
variables and define the partial second-order subdifferential of ϕ with respect
to x at (x̄, w̄) relative to v̄ by

∂2xϕ(x̄, w̄, v̄)(u) :=
(
D∗∂xϕ)(x̄, w̄, v̄)(u) for all u ∈ R

n (2.3)
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via the coderivative of the first-order partial subdifferential mapping

∂xϕ(x,w) := ∂ϕw(x) with ϕw(x) := ϕ(x,w).

Observe that N(x,w) = ∂xϕ(x,w) with ϕ(x,w) := (δΘ ◦ θ)(x,w), where
θ and Θ are taken from (2.2). We clearly have the following coderivative
representation for the normal cone mapping (2.2):

D∗N(x̄, w̄, v̄)(u) = ∂2xϕ(x̄, w̄, v̄)(u) whenever v̄ ∈ N(x̄, w̄) and u ∈ R
n.

Further elaborations of this formula require developing chain rules for the
partial second-order subdifferential (2.1) for the composite function ϕ the-
rein. The following generalized second-order chain rule taken from [24,
Theorem 3.1] is efficient in our applications to controlled sweeping pro-
cesses: Let θ : R

n×R
m → R

d be C2-smooth around (x̄, w̄) with the surjective
partial Jacobian operator ∇xθ(x̄, w̄). Then for each v̄ ∈ N(x̄, w̄) there
exists a unique vector q̄ ∈ NΘ(θ(x̄, w̄)) such that ∇xθ(x̄, w̄)

∗q̄ = v̄ and the
coderivative of the normal cone mapping (2.2) is calculated by

D∗N(x̄, w̄, v̄)(u) =

[
∇2

xx〈q̄, θ〉(x̄, w̄)
∇2

xw〈q̄, θ〉(x̄, w̄)

]
u+ (2.4)

+∇θ(x̄, w̄)∗D∗NΘ

(
θ(x̄, w̄), q̄

)(
∇xθ(x̄, w̄)u

)
, u ∈ R

n.

As we see, the second-order chain rule (2.4) reduces the calculation of
D∗N to that of D∗NΘ. Constructive computations of it for various classes
of sets Θ, which are largely encountered in optimization, control and their
applications, can be found in [21;23] and the references therein.

3. Sweeping Processes with Controlled Perturbations

In this section we consider the sweeping control system defined in (1.4),
where control functions w(·) are acting in the additive perturbations. When
the moving set C(t) in (1.4) is given a priori, optimal control problems of
the Bolza type were studied in [13;26] from the viewpoints of the existence
of optimal solutions and relaxation stability.

In [3;4] we considered the perturbed sweeping process in (1.4), where—
along with the controls w(·) in perturbations—the other type of controls
u(·) were applied to the moving set C(t) given by

C(t) := C + u(t), C :=
{
x ∈ R

n
∣∣ 〈x∗i , x〉 ≤ 0, i = 1, . . . ,m

}
(3.1)

and the fixed vectors x∗i generating the convex polyhedron C in (3.1). The
optimal control problem studied in [3; 4] was as follows: minimize

J [x, u,w] := ϕ
(
x(T )

)
+

∫ T

0
ℓ
(
x(t), u(t), w(t), ẋ(t), u̇(t), ẇ(t)

)
dt (3.2)
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over control pairs u(·) ∈ W 1,2([0, T ];Rn), w(·) ∈ W 1,2([0, T ];Rd) and the
corresponding trajectories x(·) ∈ W 1,2([0, T ];Rn) of the controlled sweep-
ing system in (1.4), (3.1). The main attention in [3; 4] was paid to the
construction of well-posed discrete approximations of (1.4)–(3.2) and using
this approach to derive necessary conditions for local optimal solutions to
this problem. The obtained results were then applied in [4] to solving some
optimal control problems for the corridor version of the crowd motion model
of traffic equilibria; see Section 5 for more details on this model.

One of the strongest motivations for our subsequent paper [5] was to
formulate and investigate a class of sweeping control system, which is suit-
able for applications to the much more realistic planar crowd motion model
the dynamic of which was described in [27] as a sweeping process over a
nonpolyhedral moving set. To accomplish this goal, we considered in [5] the
controlled sweeping process given by (1.4) with the nonconvex (and hence
nonpolyhedral) moving set in the form

C(t) := C + u(t) =
m⋂

i=1

Ci + u(t), (3.3)

Ci :=
{
x ∈ R

n
∣∣ ξi(x) ≥ 0

}
for all i = 1, . . . ,m,

defined via some convex C2-smooth functions ξi : R
n → R. Due to the

nonconvexity of the set C(t) in (3.3), we replaced therein the normal cone
of convex analysis (1.2) by the nonconvex one from Part I [22]. The optimal
control problem formulated in [5] reads as follows: minimize the cost func-
tional (3.2) over control pairs u(·) ∈W 1,2([0, T ];Rn), v(·) ∈W 1,2([0, T ];Rd)
and the corresponding trajectories x(·) ∈ W 1,2([0, T ];Rn) of (1.4) with the
controlled moving set (3.3). Besides the dynamic constraints (1.4), we
imposed the pointwise constraints on the u-controls as

0 < r1 ≤ ‖u(t)‖ ≤ r2 for all t ∈ [0, T ]

with the given constraint bounds r1, r2. Note that (1.4) yields the pointwise
mixed state-control constraints

ξi
(
x(t)− u(t)

)
≥ 0 for all t ∈ [0, T ] and i = 1, . . . ,m.

The method of discrete approximations combined with the machinery of
first-order and second-order generalized differentiation from Section 2 led
us in [5] to deriving constructive necessary optimality conditions for inter-
mediate local minimizers (as defined in Part I) in the above problem.

Let us now discuss yet another setting of sweeping optimal control,
where control actions w(·) entering the additive perturbations in (1.4) are
constrained and discontinuous. Consider the following problem (P ):

minimize J [x, u] := ϕ
(
x(T )

)
(3.4)
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over feasible pairs (x(·), u(·)) of measurable controls u(t) and absolutely
continuous trajectories x(t) on [0, T ] satisfying the perturbed controlled
sweeping process of type (1.4) written as

ẋ(t) ∈ g
(
x(t), u(t)

)
−N

(
x(t);C

)
a.e., x(0) := x0 ∈ C ⊂ R

n, (3.5)

with the conventional notation for control functions (i.e., using u(t) instead
of w(t) as in (1.4), since the set C is uncontrolled now) subject to the
pointwise control constraints given by

u(t) ∈ U ⊂ R
d a.e. t ∈ [0, T ]. (3.6)

The set C in (3.5) is a convex polyhedron defined by

C :=
m⋂

i=1

Ci with Ci :=
{
x ∈ R

n
∣∣ 〈x∗i , x〉 ≤ ci

}
. (3.7)

Developing an advanced version of the method of discrete approxima-
tions, we recently obtained in [9] a collection of new necessary optimality
conditions for (3.4)–(3.7) that includes the maximization condition of the
PMP type. Let us first describe the class of local minimizers studied
in [9]. We say that a feasible pair (x̄(·), ū(·)) for (3.4)–(3.7) is a W 1,2×L2-
local minimizer for this problem if there exists a number ε > 0 such that
J [x̄, ū] ≤ J [x, u] whenever a feasible pair (x(·), u(·)) satisfies

∫ T

0

(
‖ẋ(t)− ˙̄x(t)‖2 + ‖u(t)− ū(t)‖2

)
dt < ε.

For the reader’s convenience and brevity, we present now the major
result of [9] under the following simplified assumptions in comparison with
those imposed in [9]. The pair (x̄(·), ū(·)) therein is the fixed W 1,2 × L2-
local minimizer under consideration.

(A1) The cost function ϕ : R
n → R in (3.2) is smooth around x̄(T ).

(A2) The perturbation mapping g : R
n×R

d → R
n in (3.5) is smooth around

(x̄(·), ū(·)) and satisfies the sublinear growth condition

‖g(x, u)‖ ≤ α
(
1 + ‖x‖

)
for all u ∈ U with some α > 0.

(A3) The control set U is compact and convex in R
d.

(A4) The image set g(x,U) is convex in R
n.

(A5) The vertices x∗i of (3.7) satisfy the positive linear independence con-
straint qualification (PLICQ) meaning that

[ ∑

i∈I(x̄)

αix
∗
i = 0, αi ≥ 0

]
=⇒

[
αi = 0 for all i ∈ I(x̄)

}
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along x̄ = x̄(t) as t ∈ [0, T ], where I(x̄) := {i ∈ {1, . . . ,m} | 〈x∗i , x̄〉 = ci}.
The imposed PLICQ assumption is significantly weaker than the linear

independence constraint qualification (LICQ) corresponding to (A5) with
αi ∈ R. Note also that the convexity assumptions imposed in (A3) and (A4)
can be removed in the necessary optimality conditions presented below for
the case of strong minimizers by considering a certain relaxation procedure
as in [9]. We refer the reader to [13; 26] for various relaxation results (of
the Bogolyubov-Young type) for non-Lipschitzian differential inclusions.

Theorem 1. Let (x̄(·), ū(·)) be a W 1,2×L2-local minimizer of problem (P )
under assumptions (A1)–(A5) such that ū(·) is of bounded variation (BV)
and admits a right continuous representative on [0, T ]. Then there exist a
multiplier λ ≥ 0, a signed vector measure γ = (γ1, . . . , γs) ∈ C∗([0, T ];Rs)
as well as adjoint arcs p(·) ∈ W 1,2([0, T ];Rn) and q(·) ∈ BV ([0, T ];Rn)
such that the following conditions are fulfilled:

(i) The primal-dual dynamic relationships consisting of:

• The primal arc representation

− ˙̄x(t) =
s∑

j=1

ηj(t)xj∗ − g
(
x̄(t), ū(t)

)
for a.e. t ∈ [0, T ),

where the functions ηj(·) ∈ L2([0, T );R+) are uniquely determined for a.e.
t ∈ [0, T ) by this representation.

• The adjoint dynamic system

ṗ(t) = −∇xg
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ],

where the right continuous representative of q(·) satisfies

q(t) = p(t)−
∫

(t,T ]

s∑

j=1

dγj(τ)xj∗dτ,

for all t ∈ [0, T ] except at most a countable subset.

• The maximization condition

〈
ψ(t), ū(t)

〉
= max

u∈U

〈
ψ(t), u

〉
for a.e. t ∈ [0, T ],

where ψ(t) := ∇ug
(
x̄(t), ū(t)

)∗
q(t) on [0, T .

• The dynamic complementary slackness conditions

〈
xj∗, x̄(t)

〉
< cj =⇒ ηj(t) = 0 and ηj(t) > 0 =⇒

〈
xj∗, q(t)

〉
= cj

for a.e. t ∈ [0, T ) and all j = 1, . . . , s if LICQ holds at x̄(t).
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(ii) The endpoint relationships consisting of:

• The transversality conditions: there exist numbers ηj(T ) ≥ 0 for
j ∈ I(x̄(T )) such that

−p(T )−
∑

j∈I(x̄(T ))

ηj(T )xj∗=λ∇ϕ
(
x̄(T )

)
and

∑

j∈I(x̄(T ))

ηj(T )xj∗ ∈ N
(
x̄(T );C

)
.

• The endpoint complementary slackness conditions
〈
xj∗, x̄(T )

〉
< cj =⇒ ηj(T ) = 0 and ηj(T ) > 0 =⇒

〈
xj∗, q(T )

〉
= cj ,

where the latter holds if LICQ at x̄(T ) is additionally imposed.
(iii) The measure nonatomicity condition: If t ∈ [0, T ) and

〈xj∗, x̄(t)〉 < cj for all j = 1, . . . , s, then there exists a neighborhood Vt
of t in [0, T ) such that γ(V ) = 0 for all the Borel subsets V of Vt.

(iv) The nontriviality relationships consisting of:

• The general nontriviality conditions: we always have

(λ, p, ‖γ‖TV ) 6= 0,

which is equivalent to (λ, p, q) 6= 0 provided that LICQ holds at x̄(t).

• The enhanced nontriviality condition

(λ, p) 6= 0

holds provided that 〈xj∗, x̄(t)〉 < cj as t ∈ [0, T ) and j = 1, . . . , s.

The proof of Theorem 1 is based on the advanced method of discrete
approximations and the calculation of the second-order subdifferential (2.1)
for ϕ = δC entirely via the given data of the polyhedron (3.1); see [9].

Note that necessary optimality conditions in sweeping control theory
containing the maximization of the corresponding Hamiltonian were first
obtained in [2] for (global) optimal solutions to a sweeping process of
another type with an uncontrolled strictly smooth, convex and solid set
C(t) ≡ C and controls linearly entered an adjacent ordinary differential
equation. Further results were derived in the case of the sweeping control
system (3.5), where measurable controls u(t) enter the additive smooth
term g while the uncontrolled moving set C(t) is compact, convex or mildly
nonconvex, and possesses a C3-smooth boundary for each t ∈ [0, T ] along
with some additional assumptions. The recent paper [12] also deals with a
sweeping control system of type (3.5) and establishes necessary optimality
conditions for global minimizers involving the maximization of the standard
Hamiltonian function provided that the convex and compact set C(t) ≡ C
of nonempty interior given by C := {x ∈ R

n| ϑ(x) ≤ 0} via a C2-smooth
function ϑ under some other assumptions, which partly differ from [1].
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Certain penalty-type approximation methods developed in [1], [2], and [12]
are different from each other, significantly based on the smoothness of
uncontrolled moving sets while being sharply distinct from the method of
discrete approximations used in our approach.

4. Sweeping Processes with Controlled Moving Sets

In this section we concentrate on a challenging class of controlled sweep-
ing processes with control functions acting in moving sets. Such control
problems were introduced and studied in [7] for the case where the set C(u)
in (1.3) was defined by a half-space in R

n. A more general and involved
case of the polyhedral description of C(u) was fully investigated in [8]. The
following optimal control problem was considered therein: minimize the
cost functional (3.2) over the collection of absolutely continuous controls
u(·) = (u1(·), . . . , um(·)), w(·) = (w1(·), . . . , wm(·)) and the corresponding
absolutely continuous trajectories x(·) satisfying the sweeping differential
inclusion (1.1) with the controlled moving set

C(t) :=
{
x ∈ R

n
∣∣ 〈ui(t), x〉 ≤ wi(t), i = 1, . . . ,m

}
(4.1)

subject to the control constraints

‖ui(t)‖ = 1 for all t ∈ [0, T ], i = 1, . . . ,m, (4.2)

By (4.1) we have also the pointwise state-control constraints

x(t) ∈ C
(
u(t), w(t)

)
for all t ∈ [0, T ] (4.3)

Using the method of discrete approximations and advanced tools of vari-
ational analysis, we derived in [7; 8] necessary optimality conditions of the
extended Euler-Lagrange type for polyhedral sweeping control problems.
In this section we present more general results in this direction taken
from [15] and obtained without any polyhedrality assumptions. Besides
the conditions of the Euler-Lagrange type, the novel optimality conditions
of the extended Hamiltonian type are also given therein with discovering
that the conventional PMP formalism fails for such control systems.

Here we address the following sweeping control problem:

minimize J [x, u] := ϕ
(
x(T )

)
+

∫ T

0
ℓ
(
x(t), u(t), ẋ(t), u̇(t)

)
dt (4.4)

over absolutely continuous controls u : [0, T ] → R
m and absolutely contin-

uous trajectories x : [0, T ] → R
n of the sweeping differential inclusion

ẋ(t) ∈ g
(
x(t)

)
−N

(
h(x(t));C(u(t))

)
a.e., x(0) = x0 ∈ C

(
u(0)

)
(4.5)

with the controlled moving set defined by the inverse images

C(u) :=
{
x ∈ R

n
∣∣ θ(x, u) ∈ Θ

}
, u ∈ R

m, (4.6)
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where ϕ, ℓ, g, and h are smooth mappings, and where θ is twice continuously
differentiable around the references points with its partial Jacobian matrix
∇xθ of full rank. The set Θ in (4.6) is locally closed and is not assumed to be
convex. Hence the set C(u) is generally nonconvex as well, while the normal
cone in (4.5) is understood in our basic/limiting sense; see Part I [22].

Consider the following concept of local minimizers for (4.4)–(4.6).

Definition 1. Fix a feasible pair (x̄(·), ū(·)) to problem (4.4)–(4.6). Then
(x̄(·), ū(·)) is a local W 1,2 ×W 1,2-minimizer for this problem if

J [x̄, ū] ≤ J [x, u] for x(·) ∈W 1,2([0, T ];Rn) and u(·) ∈W 1,2([0, T ];Rm),

which are sufficiently close to (x̄(·), ū(·)) in the norm topology of W 1,2.

Let us formulate major necessary optimality conditions proved in [15,
Theorem 4.3] by using the method of discrete approximations combined
with generalized second-order calculus rule from (2.4). For simplicity we
present this result in the case where g(x) := 0 and h(x) := x for all x ∈ R

n.

Theorem 2. Let z̄(t) := (x̄(·), ū(·)) be a local W 1,2 × W 1,2-minimizer
for (4.4)–(4.6). Then there exist a multiplier λ ≥ 0, an adjoint arc p(·) =
(px, pu) ∈W 1,2([0, T ];Rn×R

m), and a measure γ ∈ C∗([0, T ];Rd) satisfying:
• Primal-dual dynamic relationships:

ṗ(t) = λ∇xℓ
(
z̄(t), ˙̄z(t)

)
+

+

[
∇2

xx

〈
η(t), θ

〉(
x̄(t), ū(t)

)

∇2
xw

〈
η(t), θ

〉(
x̄(t), ū(t)

)
] (

− λℓẋ
(
z̄(t), ˙̄z(t)

)
+ qx(t)

)
,

qu(t) = λ∇u̇ℓ
(
z̄(t), ˙̄z(t)

)
a.e. t ∈ [0, T ],

where η(·) ∈ L2([0, T ];Rs) is uniquely defined by the representation

˙̄x(t) = −∇xθ
(
x̄(t), ū(t)

)∗
η(t) a.e. t ∈ [0, T ]

with η(t) ∈ N(θ(x̄(t), ū(t));Θ), and where q : [0, T ] → R
n×R

m is a function
of bounded variation on [0, T ] with its left-continuous representative given,
for all t ∈ [0, T ] except at most a countable subset, by

q(t) = p(t)−
∫

[t,T ]
∇θ
(
x̄(τ), ū(τ)

)∗
dγ(τ).

• Measured coderivative condition: Consider the outer limit

Lim sup
|B|→0

γ(B)

|B| (t) :=
{
y ∈ R

s
∣∣∣ ∃ sequence Bk ⊂ [0, 1]

with t ∈ Bk, |Bk| → 0,
γ(Bk)

|Bk|
→ y

}
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over Borel subsets B ⊂ [0, 1] with the Lebesgue measure |B|. Then for a.e.
t ∈ [0, T ] this set has common points with

D∗NΘ

(
θ
(
x̄(t), ū(t)

)
, η(t)

)(
∇xθ(x̄(t), ū(t))(q

x(t)− λ∇u̇ℓ
(
z̄(t), ˙̄z(t)

))
.

• Transversality condition at the right endpoint:

−
(
px(T ), pu(T )

)
∈ λ
(
∇ϕ(x̄(T )), 0

)
+∇θ

(
x̄(T ), ū(T )

)
NΘ

(
(x̄(T ), ū(T )

)
.

• Measure nonatomicity condition:
If t ∈ [0, T ) with θ(x̄(t), ū(t)) ∈ intΘ, then there is a neighborhood Vt of t
in [0, T ] such that γ(V ) = 0 for any Borel subset V of Vt.

• Nontriviality condition:

λ+ sup
t∈[0,T ]

‖p(t)‖+ ‖γ‖ 6= 0 with ‖γ‖ := sup
‖x‖C([0,T ]=1

∫

[0,T ]
x(s)dγ.

It is worth mentioning that Theorem 2 does not contain a maximization
condition of the PMP. Next we present necessary optimality conditions in
the novel Hamiltonian form, which is complemented to Theorem 2 and does
contain a maximization condition of the new type as the first version of the
maximum principle for sweeping process with controlled moving sets. To
proceed, consider problem (4.4)–(4.6) with Θ = R

d
−. The proof from [15] is

based on the generalized second-order chain rule given in Section 2 and the
precise calculation of the second-order construction D∗N

R
d
−

taken from [23].

For Θ = R
d
−, consider the active index set

I(x, u) :=
{
i ∈ {1, . . . , d}

∣∣ θi(x, u) = 0
}

and observe that under the standing surjectivity assumption on ∇xθ for
each v ∈ −N(x;C(u)) there exists a unique collection {αi}i∈I(x,u) with

αi ≤ 0 and v =
∑

i∈I(x,u) αi[∇xθ(x, u)]i. Given ν ∈ R
d, define

[ν, v] :=
∑

i∈I(x,u)

νiαi

[
∇xθ(x, u)

]
i

and introduce the new Hamiltonian function by

Hν(x, u, p) := sup
{〈

[ν, v], p
〉∣∣ v ∈ −N

(
x;C(u)

)}
. (4.7)

Theorem 3. Let Θ = R
d
− in (4.4)–(4.6). Then in addition to Theorem 2

we have the maximization condition
〈[
ν(t),˙̄x(t)

]
, qx(t)− λvx(t)

〉
= Hν(t)

(
x̄(t), ū(t), qx(t)− λvx(t)

)
= 0 a.e.

holds with a measurable mapping ν : [0, T ] → R
d that for a.e. t ∈ [0, T ]

belongs to both sets in the measured coderivative condition of Theorem 2.
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Furthermore, it is shown in [15] that a conventional form of the maximum
principle with replacing the new Hamiltonian function (4.7) by

H(x, u, p) := sup
{〈
p, v
〉∣∣ v ∈ −N

(
x;C(u)

)}

fails as a necessary optimality condition in (4.4)–(4.6).

5. Selected Applications

In this final section we discuss selected applications of the necessary
optimality conditions for sweeping control systems presented above as well
as some directions of future research. The original sweeping control applica-
tions in [7;8] concerned some models from elastoplasticity. In particular, the
reader can find in [8] the results for the quasistatic elastoplasticity models
with hardening, which are described via the sweeping dynamics.

The applications in [4; 6] addressed the corridor and planar versions of
the crowd motion model. The original developments on the crowd motion
model concern local interactions between participants in order to describe
the dynamics of pedestrian traffic. Nowadays this model is successfully used
to study more general classes of problems in socioeconomics, mechanics,
operations research, etc. The microscopic form of the crowd motion model
is based on the following two postulates. Firstly, each individual has a spon-
taneous velocity that he/she intends to implement in the absence of other
participants. However, in reality the actual velocity must be considered.
The latter one is incorporated via a projection of the spontaneous velocity
into the set of admissible velocities, i.e., those which do not violate certain
nonoverlapping constraints. A mathematical description of the uncontrolled
microscopic crowd motion model was given in [27] as a sweeping process,
and then it was for numerical simulations and various applications.

In [4] we formulated an optimal control problem for the corridor version
of the crowd motion model, which was described via the sweeping dynamic
(1.4) with a polyhedral moving of type (3.1). Control problems for the more
realistic planar version was modeled in [6] in form (1.4) with a nonconvex
while prox-regular moving set. The obtained necessary optimality condi-
tions led us to developing constructive algorithms to solve such problems
with obtaining precise solutions in the case of lower numbers of participants.

The necessary optimality conditions for the sweeping optimal control
problem presented in Theorem 1, which is based on [9], were applied in [10]
to two practical models written therein in the form of the constrained con-
trolled sweeping process (3.4)–(3.7). The first model is an optimal control
version of the mobile robot model with obstacles the dynamics of which was
described as a sweeping process in [14]. The second one is a continuous-
time, deterministic, and optimal control version of the pedestrian traffic flow
model through a doorway for which a stochastic, discrete-time, and simula-
tion (uncontrolled) counterpart was originated in [17]. The application of
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Theorem 1 led us in [10] to complete calculations of optimal solutions for
both models in several important settings, but many unsolved issues still
remain in further numerical implementations and applications.

The obtained necessary optimality conditions for the sweeping control
problem (4.4)–(4.6) and its specifications presented in Section 4 also admit
various applications to practical models. We refer the reader to [15] for some
applications to nonpolyhedral models of elastoplasticity and hysteresis. The
necessary optimality conditions given in Theorems 2 and 3 are used therein
for complete calculations of optimal solutions in the controlled hysteresis
model the dynamics of which dynamics is described in the sweeping form
(4.5). Subsequent applications in this direction, including hysteresis models
that arise in problems of contact and nonsmooth mechanics, require further
elaborations of the results obtained in [15]. Among other future develop-
ments we mention rate-independent systems arising in hysteresis and related
areas. Some of such (uncontrolled) models are formulated in [2; 16] with
sweeping process descriptions of their dynamics.
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Оптимальное управление дифференциальными вклю-
чениями, II: процессы выметания

Б. Ш. Мордухович

Государственный университет Уэйна, Детройт, США

Аннотация. Статья посвящена оптимальному управлению динамическими
системами, управляемыми дифференциальными включениями с разрывными отоб-
ражениями скорости. Эта структура в основном касается нового класса задач оп-
тимального управления, описываемых различными версиями так называемых про-
цессов выметания/Моро, которые являются математически очень сложными и очень
важными в приложениях к механике, технике, экономике, робототехнике и т. д. Наш
подход основан на разработке метода дискретных приближений для задач оптималь-
ного управления такими дифференциальными включениями, который затрагивает
как численные, так и качественные аспекты оптимального управления. Таким обра-
зом, мы устанавливаем необходимые условия оптимальности для оптимальных ре-
шений дифференциальных включений и обсуждаем их различные применения. Для
получения необходимых условий оптимальности активно используются продвину-
тые инструменты вариационного анализа первого и второго порядка и обобщенного
дифференцирования.

Ключевые слова: оптимальное управление, дифференциальные включения,
вариационный анализ, процессы выметания, дискретные аппроксимации, обобщен-
ное дифференцирование.
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