
Серия «Математика»
2019. Т. 29. С. 52—67

Онлайн-доступ к журналу:
http://mathizv.isu.ru

И З В Е С Т И Я

Иркутского
государственного

университета

УДК 510.62:004.82
MSC 68T27, 68N19
DOI https://doi.org/10.26516/1997-7670.2019.29.52

Towards Semantic Document Modelling of Business

Processes ∗

A. V. Mantsivoda
Sobolev Institute of Mathematics, Novosibirsk, Russian Federation, Irkutsk State
University, Irkutsk, Russian Federation

D. K. Ponomaryov
Sobolev Institute of Mathematics, Ershov Institute of Informatics Systems, Sobolev
Institute of Mathematics, Novosibirsk, Russian Federation

Abstract. In this paper, we introduce a document–based approach to business process
modelling. We argue that declarative semantic modelling should be preferred against the
procedural one, which is typically used in software implementations of business processes.
Semantic modelling allows for a transparent description of business processes, which is
accessible both to manual and automated analysis, verification, and reuse. We present
the idea of semantic document modelling and report on its implementation in a web
platform, which has been successfully applied to automate business processes of real-world
complexity.

The basic feature of our semantic models is executability. This means that having
been developed, a semantic model can function as a practical information system. For
instance, a model, which semantically depicts business processes for enterprise resource
planning can be directly used as an ERP system. This advantage makes the program-
ming stage mainly obsolete and allows for disruptive efficiency/productivity and cost
management improvements. The level of the ‘executability’ of semantic models can
range from proof-of-concept prototypes to real-life production-level systems. We have
built a semantic modelling management system on top of the Libretto Web Framework.
The combination of modelling and web technologies leads to new approaches of web
development.

Keywords: semantic modelling, Libretto, document model, buisness process

∗ The research was supported by the Russian Science Foundation (Grant No. 17-11-
01176)

TOWARDS SEMANTICS DOCUMENT MODELLING OF BUSINESS PROCESSES 53

1. Introduction

The choice of an appropriate set of concepts for describing a subject
domain is a crucial step in conceptual modelling. It forms the basis of
conceptualization, which should be clear to the domain experts (ideally, to
a broader group of specialists) and easy to use for describing the ingredients
of the domain. One more property, which is sometimes neglected in concep-
tual modelling is that the constructed domain model should be alive and
executable. In other words, instead of only postulating the static part of the
domain, it should also be appropriate for representing the dynamic compo-
nent. This opens the way to replacing programming by modelling, which
makes the dynamics of a subject domain more transparent and accessible
to formal analysis.

The complexity of any subject domain can not be addressed without
appealing to cognitive aspects. A subject domain can be arbitrarily com-
plex by its nature, but humans tend to choose those primitives, which are
convenient for cognition. The notion of a document is an example of such a
primitive, which has been employed for centuries and is evidently important
in the context of business processes. It would be fair to say that this concept
has been formed by the human experience in information structuring and
organization of social processes. Typically, a document has a static and
dynamic nature. The static aspect of a document defines its structure
and content, while the dynamic one corresponds to modifications and ver-
sioning. Numerous activities, e.g., those related to the Enterprise Resource
Planning and similar areas, can be naturally described in terms of document
processing, including the static and dynamic aspects of documents.

In this paper, we present a document approach to business process
modelling, which is based on the notion of document and transaction. A
semantic model management system has been built as a PaaS platform on
the top of the Libretto Web Framework. The conception of the integration
of modelling and web-development techniques was established in [8]. The
approach has been successfully implemented in real-world scenarios for au-
tomating business processes of large enterprises including budgeting, sales
online control, business intelligence, and others.

Within our approach, business processes are represented in terms of
semantic document models, which combine the static part, i.e., document
types and possible states thereof, and the dynamic part, i.e., rules of transi-
tions between document states. Semantic document models are declarative
and executable and retain the meaning of business processes in contrast
to the procedural approaches implemented in today’s Enterprise Resource
Planning systems. Typically, the semantics of interacting business pro-
cesses is cut into pieces and dissolved in program modules and databases of
these systems. Thus, the logic behind the implemented business processes
is not accessible to humans and AI tools. In contrast, semantic document

54 A. V. MANTSIVODA, D. K. PONOMARYOV

models are fully declarative and open to both, manual and automated
analysis.

2. Semantic Document Models

In this section, we formulate the key notions used in our approach. The
exposition we follow here is intentionally semi-formal for the sake of clar-
ity. It should be clear from the definitions below that semantic document
models [7] allow for a declarative logic-based formulation. An example of
such formalization in the framework of the Semantic Programming [3;4] is
given in [9]. We note however that formal logic is elitist and difficult in
understanding for non-specialists. So our idea is to employ the notion of
document as a metaphor familiar to the people, which would allow them
to work with models without having to learn formal logic. Then users can
work correctly with such ‘documents’ without thinking that, in fact, they
can be presented as logical formulas. In this way, working with a semantic
document model can be viewed as the conventional work with documents.

2.1 Basic Types. Let B = 〈B1, . . . , Bk; Ω〉 be a multi-sorted algebraic
system, which defines the basic data types, where Bi are the main data
sets. In practice they can be strings, integers, reals, images, videos, etc.
The signature Ω = 〈ΩP ,ΩF , γ〉 consists of predicate symbols ΩP , functional
symbols ΩF , and a function γ, which determines the arity of predicate and
functional symbols. All elements of all sorts are distinguished (represented
by constants, that is, 0-ary functional symbols from ΩF). Constants are
denoted by c, ci. Elements corresponding to constants are denoted by c, ci.

By B = {b1, . . . ,bk,any} we denote the set of names of the basic
datatypes. The name any denotes the type of all elements.

All predicate and functional symbols are typed. The type of a predicate
symbol p, γ(p) = n is an expression 〈b1, . . . ,bn〉, and bi ∈ B means that
the i-th argument of the predicate corresponding to p must belong to the
basic set Bi. The type of a functional symbol f, γ(f) = n is an expression
〈b1, . . . ,bn,bn+1〉, where bi ∈ B, and bi, 1 ≤ i ≤ n, determine the types
of arguments and bn+1 determines the type of result of the corresponding
function.

The notions of a term, an atomic formula, and the term type are defined
inductively as usual.

2.2 Sequences. A sequence is an expression (e1, . . . , em), where ei are
some elements. Below, constants from ΩF and references to documents will
play the role of these elements. The following equalities hold on sequences

(e) = e

(. . . , (e1, . . . , ek), . . .) = (. . . , e1, . . . , ek, . . .)

Известия Иркутского государственного университета.
2019. Т. 29. Серия «Математика». С. 52–67

TOWARDS SEMANTICS DOCUMENT MODELLING OF BUSINESS PROCESSES 55

The first equality indicates that a singleton sequence is not distinguishable
from the element itself. The second equality says that sequences are flat
(without nesting, unlike, for example, lists). The empty sequence with no
elements is denoted by ().

To determine the number of elements in a sequence, we use cardinalities:C = {(), ?, !, +, *}

where () is the empty sequence, ? a sequence with zero or one element, !
a sequence containing exactly one element, + a sequence with one or more
elements, and * a sequence with any number of elements.

2.3 Documents. A document is the main concept of a semantic document
model. The role of documents is similar to objects in the object-oriented
approach (OO). We assume the following in our approach:
− a document consists of fields, for which type and cardinality are deter-

mined.
− document forms are templates that describe the structure of documents

of a particular type (similar to classes in OO).
− documents can refer to each other through the enumeration mecha-

nism.
− each document has a state. Transitions between states form the docu-

ment life cycle. The states are defined in the document form.
− the rules that specify admissible transitions of a document from one

state to another are defined in the corresponding document form.
Let I = {id1, id2, . . .} be a countable set of new constants, which is called

the set of names (identifiers). This set is divided into two disjoint countable
subsets of form names IF and document field names ID: IF ∩ ID = ∅,IF ∪ ID = I. In what follows, the form names will determine the types of
documents. So, we can define the set of all datatypes as the union of basic
type names and form names: B ∪ IF

A document field description is a triple

d = 〈d,g, c〉,

where d ∈ ID is a field name, g ∈ B∪IF its type, and c ∈ C its cardinality.
Document field names will be denoted by d, possibly with indices. The
document field description corresponding to d will be denoted by d.

Let us introduce a countable set of new constants, which are called
document states: S = {s1, s2, . . .} A transaction description is a triple

p = 〈sin, sout, P (o)〉

where sin, sout ∈ S sin is called the initial state of the transaction, sout is
called the final state, and P (o) is a transaction code. The transaction

56 A. V. MANTSIVODA, D. K. PONOMARYOV

changes a document state to sout and performs the set of instructions
generated by executing P (o).

The strength of the whole system and computational feasibility of its
properties depends on the language, in which P (o) is formulated. Conceptu-
ally, it should be quite weak to ensure the elementary nature of transactions.
The other important feature of the language is that it must have a clear
declarative semantics, e.g., to apply AI tools for controlling and predictions.
In practice, we use an automata-like language.

We now define the notion of a document form, which determines the
structure of documents of the same type. A document form is a tuple

f = 〈 f, {d1, . . . ,dn}, {s1, . . . , sm}, {p1 . . .pk}〉

where f ∈ IF is the name of the form, {d1, . . . ,dn} a finite set of field
descriptions, {s1, . . . , sm} a finite set of admissible states, {p1 . . .pk} a
finite set of transaction descriptions.

We are now ready to introduce the main concept of this paper, the
notion of a document. To identify and access documents, an enumeration
is used. To enumerate documents we use a copy of the set of natural
numbersN. The numbers enumerating documents will be called references.
To distinguish references from ordinary integers, we will write them with
the prefix id, for example, id:n1, id:5. The document corresponding to the
reference id:n is denoted by ν:n. If D is the set of all documents then we
have ν : N→ D.

A document field is a pair d = 〈d,w〉

where d ∈ ID is a field name, and w is a sequence of admissible values. The
admissible values of fields are the elements of the basic sets B1, . . . , Bk and
references from N.

We say that an element e has a type g w.r.t. an enumeration ν if one
of the following conditions holds:

1) g = any

2) g = bi and e ∈ Bi

3) g = f , e = id:n, and f is the form name of the document ν:n.

A document o is a structureo = 〈 f, {d1, . . . ,dn}, s〉

where f ∈ IF is a form name, {d1, . . . ,dn} is a set of fields, and s ∈ S. In
this case we say that the document o has the state s and denote it by o[s].
Известия Иркутского государственного университета.
2019. Т. 29. Серия «Математика». С. 52–67

TOWARDS SEMANTICS DOCUMENT MODELLING OF BUSINESS PROCESSES 57

Let σ be a syntactic structure (e.g., a form or a document). We use
operations idF (σ) and idD(σ), which give the set of all form names and
field names occurring in σ, respectively. Let us also define

idF ({σ1, . . . , σm}) = idF (σ1) ∪ . . . ∪ idF (σm)

idD({σ1, . . . , σm}) = idD(σ1) ∪ . . . ∪ idD(σm)

The signature of a document model is a finite set of document formsM = {f1, . . . , fl} closed w.r.t. the names: idF (M) ⊆ {f1, . . . , fl}, where fi
is the name of the form fi.

A document model is a finite set of documents

M = 〈{o1, . . .om}, ν〉

with the function ν, which defines an enumeration of documents.
We say that M is a model of a signatureM, if for each document o ∈ M

of a form named f the following conditions hold:

1) f ∈M, that is, a form with the name f is defined in the signature M;

2) for each field d = 〈d,w〉 of the document o, the form f contains the
description d = 〈d,g, c〉, the size of the sequence w corresponds to the
cardinality c, and each element from w has the type g;

3) the state s of the document o is a state admissible in f .

Proposition 1. The following conditions hold:

idF (M) ⊆ idF (M) and idD(M) ⊆ idD(M)

2.4 Transactions. Via transactions, a model M evolves over time. Trans-
actions are executed sequentially. Each new transaction determines the
next time point of the model life cycle. Let us introduce an ordered count-
able set T = {t0, t1, t2, . . .}, which is called the set of time points. t0 is
called the initial time point. The state of the model at the time point ti is
denoted by Mti . The application of a transaction description 〈s, s′, P (o)〉
to a document o is defined as follows.

Rule 1. Document Transaction

Mti [o[sin]] 〈sin, sout, P (o)〉
Mti+1 [o[sout]]

The model state Mti+1 is obtained from the state Mti by the execution of
instructions generated by P (o).

The next rule formulates the possibility of an external influence on the
model. The document model is not isolated. It is embedded in a context,

58 A. V. MANTSIVODA, D. K. PONOMARYOV

which generates various input via creating new documents and changing
field values.

The external information sources, which can influence the model, are
called oracles. For instance, in the scope of a business process management
system an oracle can be a data analytics/ prediction tool. It can supply the
system with the correspoding instructions depending on the previous and
current observations. Each interaction with the outer world is a separate
transaction that executes the code provided by the oracle.

Rule 2. Oracle Interaction

Mti Poracle

Mti+1

Here Poracle is a code given by the oracle for the execution. The model
state Mti+1 is obtained from Mti by applying the instructions generated
by Poracle.

Rules 1 and 2 are read as follows:

1) P (Poracle or P (o)) is executed in the context of Mti .

2) The execution of P generates a finite set of instructions ins1, . . . , insk.

3) The instructions are applied sequentially to Mti transferring it to
Mti+1 .

4) If all instructions are successfully applied, then the rule is applicable
and the model goes into state Mti+1 .

5) If the execution of some instruction fails then the model stays in state
Mti .

Thus, the set of instructions is atomic: either all instructions are executed,
or none of them (the whole computation ‘rolls back’). Let us represent a
transaction as a triplepi = 〈ti, 〈sin, sout, P (o)〉, [ins1, . . . , insk]〉 (for Rule 1)pi = 〈ti, Poracle, [ins1, . . . , insk]〉 (for Rule 2)
Here ti is a time point generated by the transaction, o is the applied
document for the first rule, and ins1, . . . , insk are executed instructions.
Now the model state at time point tn can be implicitly represented as a
pair

〈Mt0 , [p1, . . . ,pn]〉,

where Mt0 is an initial model state (usually an empty model).

Proposition 2. The explicit model state Mtn at time point tn can be
obtained by the consecutive application of all instructions from the trans-
actions p1, . . . ,pn.

Известия Иркутского государственного университета.
2019. Т. 29. Серия «Математика». С. 52–67

TOWARDS SEMANTICS DOCUMENT MODELLING OF BUSINESS PROCESSES 59

We found that it is enough to have a quite simple set of instructions:

1) newdoc(formname) creates an empty document of a particular form.

2) set(doc, field, value) assigns a value to a field of a document
doc.

3) state(doc, s) sets a new state s for a document doc.

Though in practice it is useful to have a wider range of instructions, theo-
retically these three instructions suffice.

2.5 Building Document Models. Let us briefly consider how to con-
struct document models. Documents accompany our entire life and every
activity of enterprises. These are passports, bills, receipts, instructions,
sheets, etc. Each document reflects a certain facet of our activity and has
an appropriate form and structure so as to most accurately reflect this
facet. Therefore, to represent a subject domain by a document model we
need to
− determine document forms that most precisely describe the domain;
− define document states reflecting the dynamic properties of documents

of a given form;
− introduce admissible transitions between states; chains of such transi-

tions reflect the typical processes in the subject domain.

3. Business Processes

Document models can be considered as multi-agent systems, in which
documents play the role of agents. Triggering one document and changing
its parameters triggers associated agents. A document can change only
in one way — by transferring from one state to another. A side effect
of this transition is an update of the document itself as well as triggering
updates of other documents or creating new ones. In this situation, the
model undergoes several iterations of changes until it reaches a new stable
state (a fixed point, see [9]). This mechanism resembles the operational
semantics of constraint satisfaction techniques.

This approach allows us to introduce the concept of a business process
in a quite natural way. In document models, a business process is the
life cycle of some document and the states of this document correspond
to the stages of the unfolding business process. It is important that this
definition is very close to human understanding: in the real world business
processes are always accompanied by documents and the document flow is
an important part of an implementation of a business process. We define
a business process as follows.

60 A. V. MANTSIVODA, D. K. PONOMARYOV

A business process model is a triple

〈 f, sstart, sfin〉

where f is a document form and sstart, sfin ∈ S are admissible states in f .
We call them the initial and final states of the business process, respectively.
Let o be a document of the form f . A business process of o implementing
a model 〈 f, sstart, sfin〉 is a sequence of transactions of o:o[sstart] → o[s1] → . . .→ o[sn] → o[sfin]
which starts, when o has the initial state sstart, and moves o to the final
state in such a way that si 6= sfin for each i, 1 ≤ i ≤ n.

For instance, in bSystem (our software platform for semantic document
modelling, see below), we can implement a simple book library management
system in roughly 20 minutes. It suffices to introduce three basic document
forms: a bibliography card for books, a document form for reader’s data,
and a form for issuing a book to a reader. For these three forms we have
three business processes. The first one corresponds to the life cycle of books,
the second one to the readers management, and the third one represents
the main business process of issuing a book to a reader and getting it back.
bSystem implements a solver, which executes the constructed document
models in order to compute the required state of a document model after
executing a sequence of instructions. Thus, it suffices to build a declara-
tive description of document forms (including transactions) to obtain an
operating library management system.

4. Smart Contracts

A smart contract is a computer protocol intended to facilitate, verify,
or enforce the negotiation or performance of a contract [11]. While a stan-
dard contract textually specifies the terms of a relationship (enforceable
by law), a smart contract enforces it via automated support of contract
operations and saving the history of executed operations in a trusted (e.g.,
blockchain based) ledger. Smart contracts are positioned to play the role of
a glue, which connects scalable decentralized economic spaces comprising
many companies, industries, and customers, regardless of the level of trust
between them. However, we evidence that today’s implementation of smart
contracts suffers from the same problems as business automation.

The logic of business processes is dissolved in a program code of a
contract implementation and thus, a declarative ‘what’ turns into an imper-
ative ‘how’. The code is no longer easily accessible for human or automated
control. For a Turing-complete language (e.g., Solidity [12]) automated
code analysis is impossible even theoretically due to the insolvability of

Известия Иркутского государственного университета.
2019. Т. 29. Серия «Математика». С. 52–67

TOWARDS SEMANTICS DOCUMENT MODELLING OF BUSINESS PROCESSES 61

basic algorithmic problems. More importantly, contracts-as-programs can-
not be elegantly combined with traditional business components based
on document workflow and in order to use contracts in traditional busi-
nesses one needs a programmer as an interpreter. Finally, separating smart
contracts from business processes of a company and placing them on an
external processing platform means transferring confidential data beyond
the security boundaries of the company, which is a risky and hard decision
for management.

We argue that programming in smart contracts should be replaced by
semantic modeling. This step allows us to
− integrate smart contracts with AI tools;
− significantly simplify the perception of contracts by non-programmers;
− integrate smart contracts into the environment of traditional busi-

nesses;
− make contracts more transparent;
− explicitly control the business semantics of contracts;
− ease the legal problems associated with smart contracts.
Using our terminology, the notion of smart contract is easily formulated

as follows.

A smart contract is a business process model, the instructions of which
are stored in a ledger ensuring decentralized trust.

This approach makes the interaction of smart contracts and internal
business processes seamless and integrates smart contracts into the com-
pany workflow.

5. bSystem and Locally Simple Models

We have implemented the document model technology within bSystem,
a cloud platform, which facilitates company digitalization via construction
of document models for business processes. bSystem has been built on
the top of the Libretto Web Platform, and this brings the full range of
instruments necessary for developing real-life web services. As document
models are executable, they can be directly used for business process man-
agement. bSystem provides special tools for semi-automated wrapping of
document models into web services. These services can substitute various
ERP, CRM, financial, and accounting systems, which are widely used by
businesses today. Document modeling has strong advantages over standard
approaches based on programming. The development and maintenance of
services based on document models is much more efficient compared to
conventional software systems. A document model can combine all the
operational components of a company (sales, logistics, accounting, customer
relationship, etc.) and provides a single digital pool of the company. This

62 A. V. MANTSIVODA, D. K. PONOMARYOV

allows for automated management of complex ‘multi-component’ business
processes. Careful preservation of their semantics allows for incorporating
AI tools, e.g, for knowledge discovery and prediction, as well as integration
of operational management with business intelligence. In other words,
document models allow the management to gain really full control over
the company.

bSystem is primarily focused on building locally simple models (LSM)
[6;7]. LSMs are arbitrarily complex models that are assembled from reason-
ably simple submodels as components. From our point of view, such models
most accurately reflect businesses: the structure and business processes
in, e.g., Boeing company are immensely complex, but each job in it is
comprehensible for a single person or a group of people. A LSM consists of
three types of submodels:
− A locale, which is a submodel describing a relatively closed and isolated

area of the global domain. In particular, it can be the locale of prod-
uct distribution, the locale of personnel management, the customer
relationship locale, etc. Locales are the main building blocks for LSMs.

− An interface: an LSM is built through the integration of locales.
However uncontrolled merging is not efficient: first, it increases the
complexity of the resulting ‘mixture’ and, second, it does not corre-
spond to practice (nobody mixes the accountant’s competence with
that of a merchandiser). Therefore, locales ‘communicate’ through
interfaces, which are mutual submodels of locales.

− An oracle is a pseudo-model which is interpreted within the LSM as an
interface, but actually provides interaction with the outer world, e.g.,
a person’s workplace, a programming robot, an external IT system
such as data analytics/prediction software or IoT (e.g. an automated
weather station or a point of sale).

All industrial applications mentioned below have LSMs as their kernel.

6. Applications

Using bSystem, we have implemented a number of industrial-scale ser-
vices. In particular, we have developed a service for sales management for a
large regional retailer. The service processes more than 200,000 sale receipts
per day and allows the company management to use online monitoring of
sales in 255 supermarkets and discounters.

Our other application supports personnel management of a company
with a staff of over 5000 people. The company management has developed
a system of employee motivation, which consists of dozens of different types
of incentive rewards, both individual and collective. The descriptions of
incentives contain data, which is required in the calculation of salaries. The
application automatically uses these declarative data for salary calculation.

Известия Иркутского государственного университета.
2019. Т. 29. Серия «Математика». С. 52–67

TOWARDS SEMANTICS DOCUMENT MODELLING OF BUSINESS PROCESSES 63

It also takes into account complex logical connections between motivations,
employee positions, various employee activities, and the general structure of
the company. The application does not rely on explicit programming. The
model is executable and all the operational work is done by the bSystem
solver. This model has been developed in two months by two members
of our team [6]. It included several locales and oracles like a motivation
system locale, a personnel (jobs and company structure) locale, and a set
of oracles for outer components, such as logistics, inventory schedules, etc.

The process of salary calculation is as follows. Payrolls are the main
document of the personnel locale intended for salary representation. It has
two states ‘To-Be-Calculated’ and ‘Completed’. The first state is the initial
one. Salary calculation is performed within the transaction transferring a
payroll to the state ‘Completed’. The personnel and motivation locales are
‘communicating’ through an interface, in which incentives are assigned to
jobs.

Here are some statistics on the calculation of the annual salary for the
retailer’s line personnel. The number of jobs is 3,576 from 243 opera-
tional branches. The number of formalized incentives is 63. The oracle
of inventory contains 87 schedules. Totally, the transaction has generated
1,159,113 documents, and 81,552 payrolls among them. Thus, with the
help of modeling, we managed to formally describe a unique and quite
complex motivation system working in a company. This motivation system
would have been harder to implement within a standard salary calculating
software. Importantly, the models (locales), which have been developed
within this project, were efficiently applied in other companies.

7. Discussion

Semantic document modeling is similar to developing a specification of
an information system and provides a semantic document model as an
outcome. The executability of a model means that as soon as we have
specified some business process, the programming stage is not needed, since
its functionality is automatically derived from the semantic model itself.
The global consequence of this idea is that we can replace programming by
modeling. The results of this step are quite impressive.

Semantic modeling is much less expensive in development and mainte-
nance, than programming. Unlike programming, modeling is accessible to
a much wider range of specialists, e.g., experts in a modeled domain. AI
tools and software robots can integrate with semantic models.

The first point means that semantic modeling, where applicable, has
significant economic advantages over classical programming. The second
point means that programmers are no longer required as intermediaries
between domain experts and information systems, since the former can

64 A. V. MANTSIVODA, D. K. PONOMARYOV

directly build models. The third point is very important in the light of
the 4th industrial revolution, which we witness today. It means that the
roles (jobs) formalized in the model can be robotized. Thus, whenever it is
possible to apply semantic modeling in some industry, it has a disruptive
impact on it, and gives significant competitive advantages.

Our claims here might resemble the fundamental proposal of Tim Berners-
Lee [2] to use the potential of knowledge modeling on the web. The idea
was to apply the logical means to achieve more efficient data management
on the web and to create automated agents. From this idea the concept of
Semantic Web has grown. A variety of Description Logics were used as its
logical basis [1; 5].

Unfortunately, the Semantic Web did not achieve the goals set by Berners-
Lee. It has become a rather restricted mathematical discipline with a
limited influence on the outside world and very weak dissemination in
practical domains. The major problem with the Semantic Web, in our
opinion, is that it considers knowledge processing as a purely mathematical
problem, whereas in fact it can only be solved at an interdisciplinary level.
The key problems of knowledge processing are perceptual in nature and lie
in the field of cognitive psychology, so finding ‘yet another’ logical formalism
does not improve the situation. We have a great spectrum of brilliant logical
techniques, but little of them enjoy practical significance.

Here we fall into an ‘intellectuality’ trap, when trying to model our own
thinking instead of looking around. We are fighting for automated reason-
ing and develop complex knowledge models, but we do not pay attention to
the fact that the bulk of tasks that people around us are trying to solve are
much simpler. For example, a retailer company as a business model is an
extremely complex system. But this model is designed so that each of its
components (‘tasks’) is quite transparent for a fairly wide range of people
and can be modeled logically. We face the real complexity of the retailer’s
model when these locally-simple ‘tasks’ are used as puzzle pieces to build
a holistic business mosaic. And here the complexity can be enormous.

Our hypothesis is that a huge number of practically significant models in
our world are locally simple. But we must ensure that a logical formalism
we use is comprehensible for the wide range of users. Otherwise, the fate of
the Semantic Web will await us. So, ideally, people should not even realize
that they work within a formal logical framework. The solution here is to
find a metaphor, which is familiar to people, and which would allow them
to correctly operate within locally simple models without the need to study
logic. As such a metaphor, we have identified the concept of document.

Известия Иркутского государственного университета.
2019. Т. 29. Серия «Математика». С. 52–67

TOWARDS SEMANTICS DOCUMENT MODELLING OF BUSINESS PROCESSES 65

8. Conclusion

Currently our main efforts are focused on the practical document mod-
eling of real-world complexity. Our implementation of semantic document
modelling allows for working efficiently with models containing hundreds of
document forms and tens of millions of documents. In particular, we apply
document models in business process management services. In cooperation
with our business partners we are implementing a solution for budgeting
and commodity circulation for a 255-store retailer, a CRM-model for a
chain of furniture stores, a commercial reporting and staff management in
food production, and other projects.

We are also trying to integrate document models with machine learning
techniques. Unfortunately, it appeared that popular approaches to machine
learning, e.g., neural networks and deep learning, cannot directly work with
knowledge bases. However, there are great prospects here for methods,
which combine logic with probability (see, e.g., [10]). For these methods,
semantic document models can serve as ontologies.

References

1. Baader F., Calvanese D., McGuinness D., Nardi D., and Patel-Schneider P., edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2nd edition, 2010.

2. Berners-Lee T., Hendler J., Lassila O. The Semantic Web. Scientific American, May
2001.

3. Ershov Yu. L., Goncharov S. S., and Sviridenko D. I. Semantic Programming In-
formation processing 86: Proc. IFIP 10th World Comput. Congress, 1986, vol. 10,
Elsevier Sci., Dublin, pp. 1093–1100.

4. Goncharov S. S. and Sviridenko D. I. Σ-programming. Transl. II. Amer. Math. Soc.,
1989, no. 142, pp. 101–121.

5. Horrocks I., Patel-Schneider P., Van Harmelen F. From SHIQ and RDF to OWL: The
making of a Web Ontology Language. Journal of Web Semantics, v.1, no. 1, pp.7–26.

6. Kazakov I.A., Kustova I.A., Lazebnikova E.N., Mantsivoda A.V. Locally Sim-
ple Models Construction: Methodology and Practice. The Bulletin of Irkutsk
State University. Series Mathematics, 2017, vol. 22, pp. 71-89. (In Russian).
https://doi.org/10.26516/1997-7670.2017.22.71

7. Malykh A.A., Mantsivoda A.V. Document Modelling. The Bulletin of Irkutsk
State University. Series Mathematics, 2017, vol. 21, pp. 89-107. (in Russian).
https://doi.org/10.26516/1997-7670.2017.21.89

8. Malykh A.A., Mantsivoda A.V. The Libretto System: Web-resource Development
in a Single Model of Data and Knowledge. In Proc. 6th All-Russian Conference of
Control Problems (MCPU-2013), Gelendzhik, 2013, pp.73-75.

9. Mantsivoda A.V., Ponomaryov D.K. A Formalization of Document Models with
Semantic Modelling. The Bulletin of Irkutsk State University. Series Mathematics,
2019, vol. 27, pp. 36-54. https://doi.org/10.26516/1997-7670.2019.27.36

10. Vityaev E. The Logic of Prediction. In Proceedings of the 9th Asian Logic
Conference, World Scientific, 2006, pp. 263–276.

66 A. V. MANTSIVODA, D. K. PONOMARYOV

11. Smart Contract. Available at: https://en.wikipedia.org/wiki/Smart contract (date
of access: 20.08.2019)

12. Solidity. Available at: https://ru.wikipedia.org/wiki/Solidity (date of access:
20.08.2019) (in Russian)

Andrei Mantsivoda, Doctor of Sciences (Physics and Mathematics),
professor, Irkutsk State University, 1, K. Marks Str., Irkutsk, 664003,
Russian Federation, tel.: (3952)521241 Sobolev Institute of Mathematics,
Ershov Institute of Informatics Systems, Novosibirsk State University 1,
Lavrentyev pr., Novosibirsk, 630090, Russian Federation, tel.: +7 (383)
3306660, Libretto Labs startup (e-mail: andrei@baikal.ru)

Denis Ponomaryov, PhD, Sobolev Institute of Mathematics, Ershov
Institute of Informatics Systems, Novosibirsk State University 1, Lavren-
tyev pr., Novosibirsk, 630090, Russian Federation, tel.: +7 (383) 3306660
(e-mail: ponom@iis.nsk.su)

Received 05.06.19

К семантическому документному моделированию
бизнес-процессов

А.В. Манцивода, Д.К. Пономарев

Институт математики им. С.Л.Соболева СО РАН, Иркутский
государственный университет

Аннотация. В работе представлен подход к моделированию бизнес-процессов,
базирующийся на семантическом представлении понятия документа. Мы уверены,
что декларативное семантическое моделирование предпочтительнее процедурного,
которое обычно используется в программных реализациях бизнес-процессов. Се-
мантическое моделирование обеспечивает прозрачное описание бизнес-процессов,
которое доступно как для ручного, так и для автоматического анализа, верификации
и повторного использования. Мы представляем идею семантического документного
моделирования и рассматриваем его реализацию на веб-платформе, которая сегодня
активно применяется для автоматизации бизнес-процессов реальной сложности.

Основной особенностью наших семантических моделей является исполняемость.
Это означает, что разработанная семантическая модель может функционировать как
практическая информационная система. Например, модель, которая семантически
описывает бизнес-процессы планирования ресурсов предприятия, может функцио-
нировать как практическая ERP–система. Это преимущество делает стадию про-
граммирования, в основном, ненужной и обеспечивает резкое повышение эффек-
тивности / производительности и улучшение управления затратами. Уровень "ис-
полняемости"семантических моделей может варьироваться от опытных образцов
до реальных систем индустриального уровня. Система управления семантическими
моделями была нами построена на базе Libretto Web Framework. Комбинация тех-
нологий семантического моделирования и веб-технологий ведет к новым подходам
к веб-разработке.

Ключевые слова: семантическое моделирование, Libretto, документная модель

Известия Иркутского государственного университета.
2019. Т. 29. Серия «Математика». С. 52–67

TOWARDS SEMANTICS DOCUMENT MODELLING OF BUSINESS PROCESSES 67

Список литературы

1. Baader F., Calvanese D., McGuinness D., Nardi D., and Patel-Schneider P., editors.
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2nd edition, 2010.

2. Berners-Lee T., Hendler J., Lassila O. The Semantic Web. Scientific American,
May 2001.

3. Ershov Yu. L., Goncharov S. S., and Sviridenko D. I. Semantic Programming
Information processing 86: Proc. IFIP 10th World Comput. Congress. vol. 10,
Elsevier Sci., Dublin, 1986. pp. 1093–1100.

4. Goncharov S. S. and Sviridenko D. I. Σ-programming // Transl. II. Amer. Math.
Soc. 1989. no. 142. pp. 101–121.

5. Horrocks I., Patel-Schneider P., Van Harmelen F. From SHIQ and RDF to OWL:
The making of a Web Ontology Language // Journal of Web Semantics, v.1, no 1,
pp.7–26.

6. Казаков И.А., Кустова И.А., Лазебникова Е.Н., Манцивода А.В. Построение
локально-простых моделей: методология и практика // Известия Иркутско-
го государственного университета. Серия Математика. 2017. Т. 22. С.71-89.
https://doi.org/10.26516/1997-7670.2017.22.71

7. Малых А.А., Манцивода А.В. Документное моделирование // Известия Ир-
кутского государственного университета. Серия Математика. 2017. T. 21.
c.89-107. https://doi.org/10.26516/1997-7670.2017.21.89

8. Малых А.А., Манцивода А.В. Система Libretto: разработка веб-ресурсов в еди-
ной модели данных и знаний // 6-я Всероссийская конференция по проблемам
управления (МКПУ-2013). Геленджик. с.73-75.

9. Mantsivoda A.V. Ponomaryov D.K. A Formalization of Document Models
with Semantic Modelling // The Bulletin of Irkutsk State University.
Series Mathematics, 2019. vol. 27. pp. 36-54. https://doi.org/10.26516/1997-
7670.2019.27.36

10. Vityaev E. The Logic of Prediction // In Proceedings of the 9th Asian Logic
Conference, World Scientific. 2006. pp. 263–276.

11. Smart contract [Электронный ресурс]. URL:
https://en.wikipedia.org/wiki/Smart_contract (дата обращения: 20.08.2019).

12. Solidity [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Solidity (да-
та обращения: 20.08.2019).

Андрей Валерьевич Манцивода, доктор физико-математических
наук, профессор, Институт математики,экономики и информатики, Ир-
кутский государственный университет, Российская федерация, 664003,
Иркутск, ул. К. Маркса, 1, Институт математики им. С.Л.Соболева СО
РАН, компания Libretto Labs тел.: (3952)521241
(e-mail: andrei@baikal.ru)

Денис Константинович Пономарев, кандидат физико-математи-
ческих наук, Институт математики им. С.Л. Соболева, Инстиут Си-
стем Информатики им. А.П. Ершова, Новосибирский государственный
университет, Российская федерация, 630090, Новосибирск, пр. Лаврен-
тьева, д. 6 тел.: (383)3306660
(e-mail: ponom@iis.nsk.su)

Поступила в редакцию 05.06.19

