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Abstract. We introduce so-called semidefinite quasiconvex maximization problem. We
derive new global optimality conditions by generalizing [9]. Using these conditions, we
construct an algorithm which generates a sequence of local maximizers that converges to
a global solution. Also, new applications of semidefinite quasiconvex maximization are
given. Subproblems of the proposed algorithm are semidefinite linear programming.
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1. Introduction

Semidefinite linear programming can be regarded as an extension of
linear programming and solves the following problem

min(C, X)r,
<Aj,X>F Sbj,j:1,2,..,s, (11)
X %0,

Here X € R™™ is a matrix of variables and A; € R™ ", j = 1,2,...,s.
X = 0 means that X is a positive semidefinite matrix. We denote by
(-,-)F the Frobenius scalar product of two matrices X and Y defined by:
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(X,Y)p = trace(XTY) where trace(Z) denotes the trace of the square ma-
trix Z. The corresponding norm is the well known Frobenuis norm defined
by Xl = /X, X .

Semidefinite programming finds many applications in engineering and opti-
mization [7]. Most interior-point methods for linear programming have been
generalized to semidefinite convex programming [13; 7]. There are many
works devoted to the semidefinite convex programming problem but less
attention so far has been paid to the semidefinite quasiconvex maximization
problem.

2. Quasiconvex function and its properties

Let X = [z;;] be a matrix in R™*", and define a scalar matrix functions
f as follows

fR™™ 5 R,
Definition 2.1. Let f(X) be a differentiable function of the matriz X.
Then o (X)
"X) = .
A% < Oy >m

If f() is differentiable, then it can be checked that

fX +H) = f(X) = (f(X),H)r + o(|H| F)-
Definition 2.2. A set D C R™*" is convex if aX +(1—a)Y €D for
al X, Y €D and o € [0, 1].

Definition 2.3. The function f: 1D — R is said to be quasiconver on D if
flaX +(1—-a)Y) <max{f(X),f(Y)} forall X,Y €D and o €0,1].

The well known property of a convex function [8] can be easily generalized
as follows:

Lemma 2.1. A function f : R™*™ — R is quasiconvez if and only if the
set

Le(f) ={X e RV | f(X) < ¢}
is convex for all ¢ € R.

Proof. Necessity. Suppose that ¢ € R is an arbitrary number and X,Y €
L.(f). By the definition of quasiconvexity, we have

fl@X +(1—-a)Y) <max{f(X),f(Y)} <c forall aec|0,1],

which means that the set L.(f) is convex.

Sufficiency. Let L.(f) be a convex set for all ¢ € R. For arbitrary X,Y €
R™, define

c® =max{f(X), f(Y)}. Then X € Leo(f) and Y € L.o(f). Consequently,
aX + (1 —aY) € Leo(f), for any o € [0,1]. This completes the proof.
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Lemma 2.2. Let f : R™™" — R be a quasiconver and differentiable func-
tion. Then the inequality f(X) < f(Y) for X,Y € R™" implies that
<f/(Y)7X - Y>F <0

Proof. Since f is quasiconvex,

flaX + (1 - a)Y) <max{f(X), f(Y)} = f(Y)

for all @ € [0,1] and X,Y € R™"™ such that f(X) < f(Y). By Taylor’s
formula, there is a neighborhood of the point Y on which:

f¥ +a(X =Y)) - f(Y) =

al| X —Y|r)

a ((ren.x - vp + 2 ) <0, a0

a

From the fact that olallz = ylr) 2290, we obtain (f/(Y),X —Y)p <0

!
which completes the proof.

3. Semidefinite quasiconvex maximization problem

3.1. GLOBAL OPTIMALITY CONDITIONS

Consider the problem of maximizing a differentiable quasiconvex matrix
function subject to constraints.

max f(X)

subject to :

<Aj,X>F < bj,j = 1,2,..,8,
X =0,

(3.1)

where A; € R™",j =1,2,...,s and b; € R. We call the problem (3.1) as the
semidefinite quasiconvex maximization problem or equivalently, semidefi-
nite quasiconcave programming.

Denote by D the set corresponding to the constraints of the problem:

D= {X € R™"|(A;, X)p < bj,j = 1,2,.,5,.X 3= 0}.
Then the problem (3.1) reduces to

max f(X) (3.2)

It can be checked that the set D is convex. Problem (3.2) is nonconvex and
belongs to a class of global optimization problems.
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Introduce the level set Ef(z)(f) of the function f : R™*™ — R at a point
Z € R
Epz)(f) ={Y e R""[f(Y) = f(Z)}.

It can be checked that a space R™*™ is a Hilbert space equipped with a
norm || - ||p. We now compute a gradient of the function g(X) defined as:

1
9(X) = SIX = Ulf, X e R
Indeed,

1 1
Ag(X) = g(X + AX) —g(X) = §HX+AX—UII%— §HX—U||% =

1 1
FX+AX —UX+AX ~U)p— (X ~U,X ~U)r =

1 1

S X —UX —U)p +(X ~U.AX)p + (AX, AX)p = 5(X ~U.X ~U)r

1
Ag(X) = (X U, AX)p + 5| A X7

Hence, we get
g(X)=(X-U) (3.3)

The global optimality condition for the problem (3.2) can be formulated in
the following theorem.

Theorem 3.1. [5] If Z € D is a global solution to the problem(3.2) then

(f'(Y),X -Y)r<0 (3.4)
holds for all Y € Efz(f) and X € D. If in addition, f'(Y') # 0 holds
for allY € Eg(z)(f), then condition (3.4) is sufficient for Z € D being a

solution to the problem (3.2).

Proof. Necessity. Assume that Z is a solution of problem (3.2) and let
Y € Efz)(f) and X € D. Then we have f(X) < f(Y). Applying Lemma
2.2, we obtain (f'(Y),X —Y)r <0.

Sufficiency. Suppose, on the contrary, that Z is not a solution to the
problem (3.2), i.e, there exists an U € D such that f(U) > f(Z). The
closed set Ly(z)(f) = {X € R™"[f(X) < f(Z)} is convex by Lemma 2.1.
Let Y be the projection of U onto Ly (f) such that

Y =Ul|lr= min || X -=U|p.
X€Lys(z)(f)

Obviously,
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holds since U & Ly(z)(f). The point ¥ can be considered as a solution of
the convex minimization problem:

1
min X)=-|[|X —U|>? 3.6
<mwmmw<> 2H 7} (3.6)

Taking into account (3.3) applying the lagrange method [3] to problem (3.6)
defined on a Hilbert space, we obtain the following optimality conditions
at the point Y:

MN=20, A>20, X+A>0,
Xog' (Y )+AfTY)= (3.7)
Af(Y) = f(2)) =0

or equivalently,
A =0, A=0, )\o+)\>0,
MY =U)+ (V) = (3.8)
Af(Y) = f(Z2)) =0.

If A =0, then (3.8) implies that A > 0, f(Y) = f(Z), and f/(Y) = 0 which
contradicts the assumption in the theorem. If A = 0, then we have Ay > 0,
and ¢'(Y) =Y — U = 0 which also contradicts (3.5). So, without loss of
generality, we can set A\g = 1 and A > 0 in (3.8). Hence, we have

Y -U+M'(Y)=0, A>0.
From this, we can conclude that

M(Y)=U-Y
and
MFY),U-Y)p=|U-Y|%>0

which contradicts (3.4). Last contradiction implies that the assumption that
Z is not a global solution to problem (3.2) must be false which completes
the proof.

Remark 3.1. For a fived Y € Ey (7 (f) checking condition (3.4) reduces to

%%O%Y%Xﬁé(fW%Yﬁ

or equivalently to semidefinite linear programming:

max(f'(Y), X)p,

subject to :

<A]7X> < b])j = 1727"'787
X =0.
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Remark 3.2. In order to conclude that a point ZNG D is not a global
solution to problem (3.2), we need to find a pair (U,Y) such that

(f'(Y),U~=Y)p >0,Y € Eyz)(f),U €D.
The following example illustrates the use of this property.
Example 3.1. Consider the problem

X 2
max [CX|F,

D={X cR*>?X<X<X,X =0},

-(F1) x=(11) T-(21)

We can evaluate the gradient of f as:

where

fl(xX)=20TCXx.
We check whether a point X°
o (21
X0 = ( 12
is a global solution or not. We have
F(X°) = 254.

Consider the matrix U 3= 0 in D defined by
2.7 1.2
U= (2.9 5.7 )
Let Y so that Y € E(x0)(f) and defined by

& _ (00027 0.01264
~ 1 0.0090 0.03723

If we evaluate (f'(Y),U —Y)p, then (f/(Y),U —Y)p = 6.7218 > 0 which
means that X© is not a global solution. Therefore, we obtain the point U
such that f(U) > f(X°). Similarly, continuing this process we can get the
global solution X* which is :
« (43
w-(31)



116 R. ENKHBAT, M. BELLALILJ, K. JBILOU and T. BAYARTUGS
3.2. THE SDMAX ALGORITHM

As we have seen in Subsection 3.1 that in order to check condition (3.4),
we need to solve the following semidefinite linear programming for each
given Y € E¢z)(f).

max (f'(Y), X) . (3.10)
zeD
For this purpose, we need to approximate the level set of the function f
with a finite number of points so that one could solve a finite number of
problems (3.10).

Definition 3.1. The set A7} defined for a given m € N and Z € R™*™ by
7 ={YLY? LYY €Eyn(f)i=12,.,m} (3.12).
1s called an approximation set to the level set Ef(Z)(f) at the point Z.

Assume that A% is given and D is compact in R"*™. Let U%,i =1,2,....,m
be the solutions to the following problems:

(), U P = pax((V), X) . (313)

Define 6,,, as follows:

Lemma 3.1. If there is a point Yt e AP for Z € D such that (f'(Y*), U’ —
Y*)p > 0, where U" satisfies (3.13),then

U > f(2).
Proof. By the definition of U, we have

1y 7T i 1y i

(FV), U7 = V) = max(£/(Y), X = V)
Since f is quasiconvex, then by Lemma 2 we have f(U?) < f(Y*) which
implies that  (f(Y"),U — Y")r < 0 for all U,Y € R™*™.  The proof is
complete.
Now we can formulate an algorithm for finding an approximate solutions
for problem (3.2)
Algorithm Semidefinite quasiconvex maximization SDMAX
Input: A quasiconvex differentiable function f and a compact set D in
RTLXTL
Output: An approximate solution X to (3.2).
Step 1. Choose a point X° € . Set k := 0.
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Step 2. Find a local maximizer Z* € D of problem (3.2) for example by a
gradient method of semidefinite nonconvex programming proposed in [16]
Step 3. Construct an approximation set A7, at the point Z k.

Step 4. For each Y* € A, solve semidefinite linear programming

grgg];)g<f’(Yi),X>F.

Let U%,i =1,2,...,m be solutions, i.e.,

(), U = max( (V) X) .

Step 5. Find a number j € 1,2, ..., m such that

O = (I'(Y7), U7 =Y7)p = max (f'(Y'),U' =Y')p

j=12...m

Step 6. If 9,’% < 0 then terminate and Z* is an approximate solution.
Step 7. Set X*t1 .= U’ k :=k + 1 and go to step 2.

We notice that Algorithm SDMAX generates a sequence of local maximizers
{Z*} of the problem (3.2) such that

f(Z¥YY > £(Z2%),k=0,1...

Also, local maximizers can be found by semidefinite linear programming
relaxations similar to [10]. This gives us an opportunity to approach the
global solution in (3.2) using standard approach of semidefinite program-
ming.

As we can see that in Algorithm SDMAX, in order to run the algorithm we
need to specify how to to construct an approximation set A7'. In general,
construction of such approximation sets depends on the objective function
f and structure of a feasible set ID in R”**". Let us show this on the following
example.

Consider the quadratic function f:

f(X)=|CX - XB - E|%,C,B,E € R™*",
It can be checked that the gradient of f is evaluated as follows
f'(X)=2CT[(CX - XB—-E)]-2(CX - XB - E)BT
Lemma 3.2. Let a point Z€D and a vector H € R™*™ satisfy
(f'(2),H)r <0.

Then there exists a positive number a such that Z + oH € Eg(z)(f).
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Proof. With Y, = Z + aH, solve the equation f(Y,) = f(Z)
In fact, we have
f(Z+aH)=|C(Z+aH)—(Z+aH)B - E|% = |(CZ—-ZB—E)+
o(CH—-HB)|%=|(CZ—-ZB—-E|%+2a(CZ—ZB—E,CH—HB)p+
A2|CH-HB|% = f(Z)+2a(CT(CZ-ZB—E)—(CZ—ZB—-E)BT ,H)p+
o?||CH — HB|%.
Now the equation f(Yy,) = f(Z) gives us

2(CT(CZ~-ZB-E)-(CZ~-ZB-E)BT,H)p
|ICH — HB|%

o =

>0, (3.14)

which completes the proof.
Remark 1. If Z is a local maximizer of problem (3.2), then by [8] we have

(f'(2),X —Z)r <0,¥X €D.

If we take H = U — Z, U € D, then (f'(Z),H) < 0 which satisfies
condition of the lemma.

For this reason, in a computational experiment points Y € A7, should
be constructed as

Yi=ZF 4 o,HY, i=1,2,...m,

where Zk is a current local maximizer to problem at k-th iteration (2,4),
and H' is random matrix in R™*",  «; is computed by formula (3.14).

4. Application of semidefinite quasiconvex maximization

4.1. MAXIMUM SUM OF MUTUAL INFORMATION IN MIMO
INTERFERENCE NETWORKS

In communication theory, multiple-input multiple-output (MIMO) refers
to radio links with multiple antennas at the transmitter and the receiver
side. The system to model consists to k& user-MIMO where the transmitter
has M antennas and each receiver has N antennas. A wide range of studies
in this area end up to solve difficult optimization problems [15; 12]. Such
problems do not admit a closed from solution and in general it is very
difficult to solve them numerically. For instance, in[l], multiuser MIMO
system with in general it is neither concave nor convex. Without going
into details, mathematically the problem in question can be formulated as
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follows:
max F(Q1, Q2, ..., Q)
subject to
k
Z trace(Q;) < pr,
i=1
Qi = 07

where pr is the total power constraint and the objective function F' is a
nonlinear function defined by:

k
F(Q1,Qa, Qi) = Y _logy |1 + prHyQuH} Ry |,
=1

whith R =1 + Z?ZL#Z m,jHl,ijH;:j’ H; e RNXM denotes the channel
matrix between the receive antennas of user [ and the transmit antennas of
user j. The parameters p; and 7, ; are , respectively, the signal-to-noise ratio
(SNR) of user [ and the interference- to noise ratio (INR) of the interference
which is generated by user j and received by user Is receiver.

The maximization is performed over covariance matrices of all transmitter
Q1,Q2,...,Qr each of which is an M x M positive semi-definite matrix.
The goal covariance matrices that achieve this maximum. In general, this
problem seems not to be a standard semidefinite programming. It has been
shown in [1] that when the INR is sufficiently large( large interference) for
any i, F(Q1,Q2, ..., Qk) is convex function with respect to one variable Q;,
i=1,...,k.

5. Conclusion

We consider the semidefinite convex maximization problem. Unlike semi-
definite convex programming, the problem is nonconvex and NP hard. We
derived global optimality conditions by extending a result of Strekalovsky
[9] for semidefinite quasiconvex maximization problem. Based on the global
optimality conditions, we propose an algorithm for solving the problem.
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